×

Intrinsic and extrinsic comparison results for isoperimetric quotients and capacities in weighted manifolds. (English) Zbl 1448.53044

Summary: Let \((M, g)\) be a complete non-compact Riemannian manifold together with a function \(e^h\), which weights the Hausdorff measures associated to the Riemannian metric. In this work we assume lower or upper radial bounds on some weighted or unweighted curvatures of \(M\) to deduce comparisons for the weighted isoperimetric quotient and the weighted capacity of metric balls in \(M\) centered at a point \(o \in M\). As a consequence, we obtain parabolicity and hyperbolicity criteria for weighted manifolds generalizing previous ones. A basic tool in our study is the analysis of the weighted Laplacian of the distance function from \(o\). The technique extends to non-compact submanifolds properly immersed in \(M\) under certain control on their weighted mean curvature.

MSC:

53C20 Global Riemannian geometry, including pinching

References:

[1] Ahlfors, L. V., Sur le type d’une surface de Riemann, C. R. Acad. Sci. Paris, 201, 30-32 (1935) · JFM 61.0365.01
[2] Bakry, D.; Émery, M., Diffusions hypercontractives, (Séminaire de Probabilités, XIX, 1983/84. Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123 (1985), Springer: Springer Berlin), 177-206 · Zbl 0561.60080
[3] Bakry, D.; Qian, Z., Volume comparison theorems without Jacobi fields, (Current Trends in Potential Theory. Current Trends in Potential Theory, Theta Ser. Adv. Math., vol. 4 (2005), Theta: Theta Bucharest), 115-122 · Zbl 1212.58019
[4] Bayle, V., Propriétés de concavité du profil isopérimétrique et applications (2003), Institut Fourier (Grenoble), PhD thesis
[5] Bianchini, B.; Mari, L.; Rigoli, M., On some aspects of oscillation theory and geometry, Mem. Am. Math. Soc., 225, 1056 (2013), vi+195 · Zbl 1295.34047
[6] Cañete, A.; Rosales, C., Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities, Calc. Var. Partial Differ. Equ., 51, 3-4, 887-913 (2014) · Zbl 1317.53006
[7] Chavel, I., Riemannian Geometry. A Modern Introduction, Cambridge Studies in Advanced Mathematics, vol. 98 (2006), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1099.53001
[8] do Carmo, M. P., Riemannian Geometry, Mathematics: Theory & Applications (1992), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA, Translated from the second Portuguese edition by Francis Flaherty · Zbl 0752.53001
[9] Esteve, A.; Palmer, V., On the characterization of parabolicity and hyperbolicity of submanifolds, J. Lond. Math. Soc. (2), 84, 1, 120-136 (2011) · Zbl 1231.31006
[10] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224 (1977), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0361.35003
[11] Greene, R. E.; Wu, H., Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Mathematics, vol. 699 (1979), Springer: Springer Berlin · Zbl 0414.53043
[12] Grigor’yan, A., Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Am. Math. Soc. (N.S.), 36, 2, 135-249 (1999) · Zbl 0927.58019
[13] Grigor’yan, A., Escape rate of Brownian motion on Riemannian manifolds, Appl. Anal., 71, 1-4, 63-89 (1999) · Zbl 1020.58024
[14] Grigor’yan, A., Heat kernels on weighted manifolds and applications, (The Ubiquitous Heat Kernel. The Ubiquitous Heat Kernel, Contemp. Math., vol. 398 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 93-191 · Zbl 1106.58016
[15] Grigor’yan, A., Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47 (2009), American Mathematical Society/International Press: American Mathematical Society/International Press Providence, RI/Boston, MA · Zbl 1206.58008
[16] Grigor’yan, A.; Masamune, J., Parabolicity and stochastic completeness of manifolds in terms of the Green formula, J. Math. Pures Appl. (9), 100, 5, 607-632 (2013) · Zbl 1356.58007
[17] Grigor’yan, A.; Saloff-Coste, L., Hitting probabilities for Brownian motion on Riemannian manifolds, J. Math. Pures Appl. (9), 81, 2, 115-142 (2002) · Zbl 1042.58022
[18] Gromov, M., Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., 13, 1, 178-215 (2003) · Zbl 1044.46057
[19] Hurtado, A.; Palmer, V.; Rosales, C., Parabolicity criteria and characterization results for submanifolds of bounded mean curvature in model manifolds with weights, Nonlinear Anal., 192, Article 111681 pp. (2020) · Zbl 1436.31025
[20] Ichihara, K., Curvature, geodesics and the Brownian motion on a Riemannian manifold I. Recurrence properties, Nagoya Math. J., 87, 101-114 (1982) · Zbl 0514.60077
[21] Jorge, L.; Koutroufiotis, D., An estimate for the curvature of bounded submanifolds, Am. J. Math., 103, 4, 711-725 (1981) · Zbl 0472.53055
[22] Kennard, L.; Wylie, W., Positive weighted sectional curvature, Indiana Univ. Math. J., 66, 2, 419-462 (2017) · Zbl 1371.53032
[23] Kennard, L.; Wylie, W.; Yeroshkin, D., The weighted connection and sectional curvature for manifolds with density, J. Geom. Anal., 29, 1, 957-1001 (2019) · Zbl 1410.53040
[24] Lichnerowicz, A., Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris, Sér. A-B, 271, A650-A653 (1970) · Zbl 0208.50003
[25] Lichnerowicz, A., Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative, J. Differ. Geom., 6, 47-94 (1971/72) · Zbl 0231.53063
[26] Lott, J., Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv., 78, 4, 865-883 (2003) · Zbl 1038.53041
[27] Mantegazza, C.; Mascellani, G.; Uraltsev, G., On the distributional Hessian of the distance function, Pac. J. Math., 270, 1, 151-166 (2014) · Zbl 1305.58011
[28] Mari, L.; Rigoli, M.; Setti, A. G., Keller-Osserman conditions for diffusion-type operators on Riemannian manifolds, J. Funct. Anal., 258, 2, 665-712 (2010) · Zbl 1186.53051
[29] Markvorsen, S.; Palmer, V., Generalized isoperimetric inequalities for extrinsic balls in minimal submanifolds, J. Reine Angew. Math., 551, 101-121 (2002) · Zbl 1016.53047
[30] Markvorsen, S.; Palmer, V., Transience and capacity of minimal submanifolds, Geom. Funct. Anal., 13, 4, 915-933 (2003) · Zbl 1045.53028
[31] Markvorsen, S.; Palmer, V., How to obtain transience from bounded radial mean curvature, Trans. Am. Math. Soc., 357, 9, 3459-3479 (2005) · Zbl 1071.58028
[32] Markvorsen, S.; Palmer, V., Torsional rigidity of minimal submanifolds, Proc. Lond. Math. Soc. (3), 93, 1, 253-272 (2006) · Zbl 1104.53056
[33] Markvorsen, S.; Palmer, V., Extrinsic isoperimetric analysis of submanifolds with curvatures bounded from below, J. Geom. Anal., 20, 2, 388-421 (2010) · Zbl 1185.53067
[34] Morgan, F., Myers’ theorem with density, Kodai Math. J., 29, 3, 455-461 (2006) · Zbl 1132.53306
[35] Morgan, F., Geometric Measure Theory. A Beginner’s Guide (2009), Elsevier/Academic Press: Elsevier/Academic Press Amsterdam · Zbl 1179.49050
[36] Munteanu, O.; Wang, J., Geometry of manifolds with densities, Adv. Math., 259, 269-305 (2014) · Zbl 1290.53048
[37] O’Neill, B., Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, vol. 103 (1983), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers] New York · Zbl 0531.53051
[38] Palmer, V., Isoperimetric inequalities for extrinsic balls in minimal submanifolds and their applications, J. Lond. Math. Soc. (2), 60, 2, 607-616 (1999) · Zbl 0977.53069
[39] Palmer, V., On Deciding Whether a Submanifold Is Parabolic of Hyperbolic Using Its Mean Curvature, Simon Stevin Transactions on Geometry, vol. 1 (2010), Simon Stevin Institute for Geometry: Simon Stevin Institute for Geometry Tilburg, The Netherlands
[40] Petersen, P., Riemannian Geometry, Graduate Texts in Mathematics, vol. 171 (2006), Springer: Springer New York · Zbl 1220.53002
[41] Pigola, S.; Rigoli, M.; Rimoldi, M.; Setti, A. G., Ricci almost solitons, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 10, 4, 757-799 (2011) · Zbl 1239.53057
[42] Pigola, S.; Rigoli, M.; Setti, A. G., Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique, Progress in Mathematics, vol. 266 (2008), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1150.53001
[43] Qian, Z., On conservation of probability and the Feller property, Ann. Probab., 24, 1, 280-292 (1996) · Zbl 0854.60080
[44] Qian, Z., Estimates for weighted volumes and applications, Q. J. Math. Oxf. Ser. (2), 48, 190, 235-242 (1997) · Zbl 0902.53032
[45] Wei, G.; Wylie, W., Comparison geometry for the Bakry-Emery Ricci tensor, J. Differ. Geom., 83, 2, 377-405 (2009) · Zbl 1189.53036
[46] Wu, J.-Y., Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature, J. Math. Anal. Appl., 361, 1, 10-18 (2010) · Zbl 1183.58028
[47] Wylie, W., Sectional curvature for Riemannian manifolds with density, Geom. Dedic., 178, 151-169 (2015) · Zbl 1325.53047
[48] Zhu, S., The comparison geometry of Ricci curvature, (Comparison Geometry. Comparison Geometry, Berkeley, CA, 1993-94. Comparison Geometry. Comparison Geometry, Berkeley, CA, 1993-94, Math. Sci. Res. Inst. Publ., vol. 30 (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 221-262 · Zbl 0896.53036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.