×

Mann iteration process for monotone nonexpansive mappings. (English) Zbl 1448.47069

Suppose that \(X:=(X,\|\cdot\|)\) is a Banach space and \(\leq\) is a partial order on \(X\) such that the order intervals \(\{x\in X:a\leq x\}\) and \(\{x\in X:x\leq a\}\) are closed and convex for all \(a\in X\). In this paper, the authors prove a weak convergence theorem for a fixed point of a monotone nonexpansive mapping in a Banach space with Opial’s condition. Recall that \(T:C\to C\), where \(C\) is a bounded closed convex subset of \(X\), is a monotone nonexpansive mapping if \(Tx\leq Ty\) and \(\|Tx-Ty\|\leq\|x-y\|\) for all \(x,y\in C\) with \(x\leq y\).

MSC:

47J26 Fixed-point iterations
47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.

References:

[1] Browder, FE: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041-1044 (1965) · Zbl 0128.35801 · doi:10.1073/pnas.54.4.1041
[2] Göhde, D: Zum prinzip der kontraktiven abbildung. Math. Nachr. 30, 251-258 (1965) · Zbl 0127.08005 · doi:10.1002/mana.19650300312
[3] Kirk, WA: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 72, 1004-1006 (1965) · Zbl 0141.32402 · doi:10.2307/2313345
[4] Goebel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge Stud. Adv. Math., vol. 28. Cambridge University Press, Cambridge (1990) · Zbl 0708.47031 · doi:10.1017/CBO9780511526152
[5] Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984) · Zbl 0537.46001
[6] Khamsi, MA, Kirk, WA: An Introduction to Metric Spaces and Fixed Point Theory. Wiley, New York (2001) · Zbl 1318.47001 · doi:10.1002/9781118033074
[7] Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132, 1435-1443 (2004) · Zbl 1060.47056 · doi:10.1090/S0002-9939-03-07220-4
[8] Nieto, JJ, Rodríguez-López, R: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223-239 (2005) · Zbl 1095.47013 · doi:10.1007/s11083-005-9018-5
[9] Banach, S: Sur les opérations dans les ensembles abstraits et leurs applications. Fundam. Math. 3, 133-181 (1922) · JFM 48.0201.01
[10] Goebel, K, Kirk, WA: Iteration processes for nonexpansive mappings. Contemp. Math. 21, 115-123 (1983) · Zbl 0525.47040 · doi:10.1090/conm/021/729507
[11] Beauzamy, B: Introduction to Banach Spaces and Their Geometry. North-Holland, Amsterdam (1985) · Zbl 0585.46009
[12] Borwein, J, Reich, S, Shafrir, I: Krasnoselskii Mann iterations in normed spaces. Can. Math. Bull. 35, 21-28 (1992) · Zbl 0712.47050 · doi:10.4153/CMB-1992-003-0
[13] Ishikawa, S: Fixed points and iteration of a nonexpansive mapping in a Banach space. Proc. Am. Math. Soc. 59, 65-71 (1976) · Zbl 0352.47024 · doi:10.1090/S0002-9939-1976-0412909-X
[14] Krasnoselskii, MA: Two observations about the method of successive approximations. Usp. Mat. Nauk 10, 123-127 (1955) · Zbl 0064.12002
[15] Reich, S: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274-276 (1979) · Zbl 0423.47026 · doi:10.1016/0022-247X(79)90024-6
[16] Reich, S, Shafrir, I: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15, 537-558 (1990) · Zbl 0728.47043 · doi:10.1016/0362-546X(90)90058-O
[17] Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591-597 (1967) · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.