×

Non-hyperbolic iterated function systems: semifractals and the chaos game. (English) Zbl 1448.37048

The authors study continuous iterated function systems (IFSs) defined on a compact metric space \(X\). A continuous IFS is called hyperbolic if all of its maps are uniformly contractive; otherwise non-hyperbolic. Amongst these non-hyperbolic IFSs are the weakly hyperbolic ones \(\mathrm{IFS}(f_1,\ldots,f_k)\) defined by \[ \lim_{n\to\infty} \text{diam}\, f_{\omega_0}\circ \cdots\circ f_{\omega_n}(X) = 0, \] for all \(\omega = \omega_0\ldots\omega_n\ldots\in \Sigma_k:= \{1,\ldots, k\}^\mathbb{N}\).
Define the subset \(S_{\text{wh}}\subset\Sigma_k\) of weakly hyperbolic sequences by \[ S_{\text{wh}} := \left\{\omega\in \Sigma_k : \lim_{n\to\infty}\text{diam}\, f_{\omega_0}\circ \cdots\circ f_{\omega_n}(X) = 0\right\}. \] With \(S_{\text{wh}}\) one can associate a coding map \(\pi:S_{\text{wh}}\to X\) given by \(\pi (\omega):= \lim\limits_{n\to\infty} f_{\omega_0}\circ \cdots\circ f_{\omega_n}(p)\), for arbitrary \(p\in X\).
The authors focus on the properties of so-called target sets which are defined by \[ A_{\text{tar}} := \pi (S_{\text{wh}}). \] It is shown that the closure of \(A_{\text{tar}}\) is a semi-fractal set and necessary and sufficient conditions are given for the closure of \(A_{\text{tar}}\) to be a local attractor of an IFS. In addition, random orbits of the IFSs are studied and it is proven that such orbits draw target set that are stable in a certain sense.

MSC:

37E05 Dynamical systems involving maps of the interval
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
28A80 Fractals

References:

[1] T. Banakh, W. Kubiś, N. Novosad, M. Nowak, and F. Strobin,Contractive function systems, their attractors and metrization, Topol. Methods Nonlinear Anal. 46 (2015), 1029-1066. · Zbl 1360.28007
[2] M. F. Barnsley,Fractals Everywhere, 2nd ed., Academic Press Professional, Boston, MA, 1993. · Zbl 0691.58001
[3] M. F. Barnsley and J. F. Elton,A new class of Markov processes for image encoding, Adv. Appl. Probab. 20 (1988), 14-32. · Zbl 0643.60050
[4] M. F. Barnsley and K. Leśniak,The chaos game on a general iterated function system from a topological point of view, Int. J. Bifur. Chaos Appl. Sci. Engrg. 24 (2014), no. 11, art. 1450139, 10 pp. · Zbl 1304.28003
[5] M. F. Barnsley, K. Leśniak and M. Rypka,Chaos game for IFSs on topological spaces, J. Math. Anal. Appl. 435 (2016), 1458-1466. · Zbl 1341.37013
[6] M. F. Barnsley and A. Vince,The chaos game on a general iterated function system, Ergodic Theory Dynam. Systems 31 (2011), 1073-1079. · Zbl 1221.37079
[7] P. G. Barrientos, F. H. Ghane, D. Malicet and A. Sarizadeh,On the chaos game of iterated function systems, Topol. Methods Nonlinear Anal. 49 (2017), 105-132. · Zbl 1373.37054
[8] L. Breiman,The strong law of large numbers for a class of Markov chains, Ann. Math. Statist. 31 (1960), 801-803. · Zbl 0104.11901
[9] L. J. Díaz and K. Gelfert,Porcupine-like horseshoes: transitivity, Lyapunov spectrum, and phase transitions, Fund. Math. 216 (2012), 55-100. · Zbl 1273.37027
[10] L. J. Díaz, K. Gelfert and M. Rams,Almost complete Lyapunov spectrum in step skew-products, Dynam. Systems 28 (2013), 76-110. · Zbl 1347.37059
[11] L. J. Díaz and E. Matias,Stability of the Markov operator and synchronization of Markovian random products, Nonlinearity 31 (2018), 1782-1806. · Zbl 1491.37003
[12] A. Edalat,Power domains and iterated function systems, Inform. and Comput. 124 (1996), 182-197. · Zbl 0916.54014
[13] J. E. Hutchinson,Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. · Zbl 0598.28011
[14] Y. G. Kudryashov,Bony attractors, Funktsional. Anal. i Prilozhen. 44 (2010), no. 3, 73-76 (in Russian). · Zbl 1271.37030
[15] A. Lasota and J. Myjak,Semifractals, Bull. Polish Acad. Sci. Math. 44 (1996), 5-21. · Zbl 0847.28006
[16] A. Lasota and J. Myjak,Fractals, semifractals and Markov operators, Int. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), 307-325. · Zbl 0973.28004
[17] A. Lasota, J. Myjak and T. Szarek,Markov operators and semifractals, in: Fractal Geometry and Stochastics III, Progr. Probab. 57, Birkhäuser, Basel, 2004, 3-22. · Zbl 1074.37005
[18] K. Leśniak,Random iteration for non-expansive iterated function systems: derandomised algorithm, Int. J. Appl. Nonlinear Sci. 1 (2014), 360-363. · Zbl 1344.37064
[19] G. Letac,A contraction principle for certain Markov chains and its applications, in: Random Matrices and Their Applications (Brunswick, ME, 1984), Contemp. Math. 50, Amer. Math. Soc., Providence, RI, 1986, 263-273. · Zbl 0587.60057
[20] A. Vince,Möbius iterated function systems, Trans. Amer. Math. Soc. 365 (2013), 491-509. · Zbl 1286.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.