×

\(W\)-shaped and bright optical solitons in negative indexed materials. (English) Zbl 1448.35089

Summary: We investigate a generalized nonlinear Schrödinger equation with higher-order effects such as pseudo-quintic nonlinearity and self-steepening effect. The model applies to the description of ultrashort pulse propagation in nonlinear materials exhibiting a negative index of refraction. Three new types of nonlinearly chirped \(W\)-shaped soliton solutions are derived for the first time by using the traveling-wave method. The obtained structures have new functional forms that are distinct from the usual W-shaped soliton solution reported within the context of optical fibers. An important characteristic of these envelope solitons is the nonlinear chirp that is directly proportional to the intensity of the pulse. It is shown that these chirped \(W\)-shaped structures are formed as a result of the exact balance among the group velocity dispersion, the self-steepening effect, and the pseudo-quintic nonlinearity. Exact chirped bright soliton solutions of the model were also obtained under appropriate conditions. Our results may raise the possibility of some experiments and potential applications related to left-handed materials in the presence of self-steepening nonlinearity.

MSC:

35C08 Soliton solutions
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q60 PDEs in connection with optics and electromagnetic theory
Full Text: DOI

References:

[1] Hao, R.; Li, L.; Li, Z. H.; Zhou, G. S., Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients, Phys Rev E, 70, 066603 (2004)
[2] Ablowitz, M. J.; Segur, H., Solitons and the inverse scattering transform (1981), SIAM: SIAM Philadelphia · Zbl 0472.35002
[3] Zhang, J. F.; Tian, Q.; Wang, Y. Y.; Dai, C. Q.; Wu, L., Self-similar optical pulses in competing cubic-quintic nonlinear media with distributed coefficients, Phys Rev A, 81, 023832 (2010)
[4] Zakharov, V. E.; Shabat, A. B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh Eksp Teor Fiz, 61, 118-134 (1971)
[5] Barthelemy, A.; Maneuf, S.; Froehly, C., Propagation soliton et auto-confinement de faisceaux laser par nonlinearite optique de Kerr, Opt Commun, 55, 201-206 (1985)
[6] Aitchison, J. S.; Weiner, A. M.; Silberberg, Y.; Oliver, M. K.; Jackel, J. L.; Leaird, D. E.; Vogel, E. M.; Smith, P. W.E., Observation of spatial optical solitons in a nonlinear glass waveguide, Opt Lett, 15, 471-473 (1990)
[7] Zakharov, V. E., Collapse of Langmuir waves, Zh Eksp Theor Fiz, 18, 1745 (1972)
[8] Berge, L., Wave collapse in physics: principles and applications to light and plasma waves, Phys Rep, 303, 259-370 (1998)
[9] Lashkin, V. M., Soliton of modified nonlinear Schrödinger equation with random perturbation, Phys Rev E, 69, 016611 (2004)
[10] Scalora, M.; Syrchin, M. S.; Akozbek, N.; Poliakov, E. Y.; D’Aguanno, G.; Mattiucci, N.; Bloemer, M. J.; Zheltikov, A. M., Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials, Phys Rev Lett, 95, 013902 (2005)
[11] Zhang, S.; Yi, L., Exact solutions of a generalized nonlinear Schrödinger equation, Phys Rev E, 78, 026602 (2008)
[12] Marklund, M.; Shukla, P. K.; Stenflo, L., Ultrashort solitons and kinetic effects in nonlinear metamaterials, Phys Rev E, 73, 037601 (2006)
[13] Daoui, A.; Triki, H.; Biswas, A.; Zhou, Q.; Moshokoa, S. P.; Belic, M., Chirped bright and double-kinked quasi-solitons in optical metamaterials with self-steepening nonlinearity, J Mod Opt, 66, 192-199 (2019)
[14] Yang, R. C.; Min, X.; Tian, J. P.; Xue, W.; Zhang, W., New types of exact quasi-soliton solutions in metamaterials, Phys Scr, 91, 025201 (2016)
[15] Zhang, Y.; Wang, Z.; Nie, Z.; Li, C.; Chen, H.; Lu, K.; Xiao, M., Four-wave mixing dipole soliton in laser-induced atomic gratings, Phys Rev Lett, 106, 093904 (2011)
[16] Wu, Z.; Zhang, Y.; Yuan, C.; Wen, F.; Zheng, H.; Zhang, Y.; Xiao, M., Cubic-quintic condensate solitons in four-wave mixing, Phys Rev A, 88, 063828 (2013)
[17] Choudhuri, A.; Porsezian, K., Dark-in-the-bright solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms, Opt Commun, 285, 364-367 (2012)
[18] Azzouzi, F.; Triki, H.; Grelu, P., Dipole soliton solution for the homogeneous high-order nonlinear Schrödinger equation with cubic-quintic-septic non-Kerr terms, Appl Math Model, 39, 1300-1307 (2015) · Zbl 1432.35191
[19] Triki, H.; Azzouzi, F.; Grelu, P., Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms, Opt Commun, 309, 71-79 (2013)
[20] Li, Z.; Li, L.; Tian, H.; Zhou, G., New types of solitary wave solutions for the higher order nonlinear Schrödinger equation, Phys Rev Lett, 84, 18, 4096-4099 (2000)
[21] Kevrekidis, P. G.; Susanto, H.; Chen, Z., High-order-mode soliton structures in two-dimensional lattices with defocusing nonlinearity, Phys Rev E, 74, 066606 (2006)
[22] Hong, W. P., Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non- Kerr terms, Opt Commun, 194, 217-223 (2001)
[23] Bendahmane, I.; Triki, H.; Biswas, A.; Alshomrani, A. S.; Zhou, Q.; Moshokoa, S. P.; Belic, M., Bright, dark and w-shaped solitons with extended nonlinear Schrödinger’s equation for odd and even higher-order terms, Superlattices Microstruct, 114, 53-61 (2018)
[24] Vyas, V. M.; Patel, P.; Panigrahi, P. K.; Kumar, C. N.; Greiner, W., Chirped chiral solitons in the nonlinear Schrödinger equation with self-steepening and self-frequency shift, Phys Rev A, 78 (2008)
[25] Triki, H.; Porsezian, K.; Choudhuri, A.; Dinda, P. T., Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background, Phys Rev A, 93, 063810 (2016)
[26] Kumar, C. N.; Durganandini, P., New phase modulated solutions for a higher-order nonlinear Schrödinger equation, Pramana, 53, 271-277 (1999)
[27] Vyas, V. M.; Raju, T. S.; Kumar, C. N.; Panigrahi, P. K., Soliton solutions of driven nonlinear Schrödinger equation, J Phys A, 39, 9151-9159 (2006) · Zbl 1095.81025
[28] Alka, A. G.; Gupta, R.; Kumar, C. N.; Raju, T. S., Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift, Phys Rev A, 84, 063830 (2011)
[29] Triki, H.; Biswas, A.; Milović, D.; Belić, M., Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities, Opt Commun, 366, 362-369 (2016)
[30] Desaix, M.; Helczynski, L.; Anderson, D.; Lisak, M., Propagation properties of chirped soliton pulses in optical nonlinear Kerr media, Phys Rev E, 65, 056602 (2002)
[31] Kruglov, V. I.; Peacock, A. C.; Harvey, J. D., Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients, Phys Rev Lett, 90, 113902 (2003)
[32] Huang, N. N.; Chen, Z. W., Fundamental theories of optical fiber soliton (1991), Wuhan University Press: Wuhan University Press Wuhan, China
[33] Christ, N. H.; Lee, T. D., Quantum expansion of soliton solutions, Phys Rev D, 12, 1606-1627 (1975)
[34] Behera, S. N.; Khare, A., Classical \(ϕ^6\) -field theory in (1+1) dimensions. a model for structural phase transitions, Pramana, 15, 245 (1980)
[35] Palacios, S. L.; Guinea, A.; Fernández-Díaz, J. M.; Crespo, R. D., Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift, Phys Rev E, 60, R45 (1999)
[36] Choudhuri, A.; Porsezian, K., Higher-order nonlinear Schr ödinger equation with derivative non-kerr nonlinear terms: a model for sub-10fs pulse propagation, Phys Rev A, 88, 033808 (2013)
[37] Choudhuri, A.; Triki, H.; Porsezian, K., Self-similar localized pulses for the nonlinear Schrödinger equation with distributed cubic-quintic nonlinearity, Phys Rev A, 94, 063814 (2016)
[38] Kozyrev, A. B.; Shadrivov, I. V.; Kivshar, Y. S., Soliton generation in active nonlinear metamaterials, Appl Phys Lett, 104, 8, 084105 (2014)
[39] Shen, Y.; Kevrekidis, P. G.; Veldes, G. P.; Frantzeskakis, D. J.; DiMarzio, D.; Lan, X.; Radisic, V., From solitons to rogue waves in nonlinear left-handed metamaterials, Phys Rev E, 95, 032223 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.