×

The elliptic modular surface of level 4 and its reduction modulo 3. (English) Zbl 1448.14036

Elliptic modular surfaces are a class of surfaces displaying an intriguing behaviour both from the geometrical and the arithmetical point of view [T. Shioda, J. Math. Soc. Japan 24, 20–59 (1972; Zbl 0226.14013)]. The present paper is concerned with the automorphism group of the elliptic modular surface of level \(4\), which is a K3 surface \(X_0\), and its reduction modulo \(3\) \(X_3\), which is known to be isomorphic to the Fermat quartic surface by work of T. Shioda [Manifolds, Proc. int. Conf. Manifolds relat. Top. Topol., Tokyo 1973, 357–364 (1975, Zbl 0311.14007)].
Both \(\mathrm{Aut}(X_0)\) and \(\mathrm{Aut}(X_3)\) have already been calculated by J. Keum and S. Kondō [Trans. Am. Math. Soc. 353, No. 4, 1469–1487 (2001; Zbl 0968.14022); S. Kondō and I. Shimada, Int. Math. Res. Not. 2014, No. 7, 1885–1924 (2014; Zbl 1343.14034)], but in this paper the results are reinterpreted in order to show the relations between them. The faithful representation of \(\mathrm{Aut}(X_0)\) and \(\mathrm{Aut}(X_3)\) on the Néron-Severi lattices \(S_0\) and \(S_3\) allows to identify \(\mathrm{Aut}(X_0)\) and \(\mathrm{Aut}(X_3)\) with subgroups of \(\mathrm{O}^+(S_0)\) and \(\mathrm{O}^+(S_3)\), respectively. Moreover, there exists a primitive embedding \(\rho\colon S_0 \rightarrow S_3\) induced by the specialization of \(X_0\) to \(X_3\). The author provides two descriptions of \(\rho\): a combinatorial description in terms of the Petersen graph and a geometrical description starting from a certain Weierstraß equation.
The positive cone of the even unimodular hyperbolic lattice \(L_{26}\) of rank \(26\) has a well-known decomposition into Conway chambers. Borcherds’ method consists in embedding the Néron-Severi lattice \(S_0\) or \(S_3\) into the even unimodular hyperbolic lattice \(L_{26}\) of rank \(26\) in order to obtain an induced chamber decomposition on the positive cone of the respective surface. The main result of the paper is the identification of the subgroup \(O^+(S_3,S_0) \cap \mathrm{Aut}(X_3)\) with an explicit subgroup of \(\mathrm{Aut}(X_0)\) using Borcherds’ method.
The author is then interested in particular automorphisms of \(X_0\) and \(X_3\), namely Enriques involutions (that is, without fixed points). Up to conjugation there are 9 different ones, but the author concentrates on Enriques involutions inducing an étale double cover \(X \rightarrow Y\) onto Enriques surfaces \(Y\) with \(|{\mathrm{Aut}(Y)}| = 320\) (type \(\mathrm{IV}\) in Nikulin-Kondō-Martin’s classification of Enriques surfaces with finite automorphism group). The explicit description of \(\mathrm{Aut}(X_0)\) and \(\mathrm{Aut}(X_3)\) allows the author to identify Enriques involutions of type \(\mathrm{IV}\) on \(X_0\) with Enriques involutions of type \(\mathrm{IV}\) on \(X_3\) and to interpret the pullbacks of the 20 rational curves on the Enriques quotient as lines on the Fermat quartic surface.

MSC:

14J28 \(K3\) surfaces and Enriques surfaces
14Q10 Computational aspects of algebraic surfaces

Software:

GAP

References:

[1] Keum, J.; Kondō, S., The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, Trans. Am. Math. Soc., 353, 4, 1469-1487 (2001) · Zbl 0968.14022
[2] Kondō, S.; Shimada, I., The automorphism group of a supersingular \(K3\) surface with Artin invariant 1 in characteristic 3, Int. Math. Res. Not. IMRN, 7, 1885-1924 (2014) · Zbl 1343.14034
[3] Borcherds, R., Automorphism groups of Lorentzian lattices, J. Algebra, 111, 1, 133-153 (1987) · Zbl 0628.20003
[4] Borcherds, RE, Coxeter groups, Lorentzian lattices, and \(K3\) surfaces, Int. Math. Res. Not., 1998, 19, 1011-1031 (1998) · Zbl 0935.20027
[5] Shioda, T., On elliptic modular surfaces, J. Math. Soc. Jpn., 24, 20-59 (1972) · Zbl 0226.14013
[6] Shioda, T.: Algebraic cycles on certain \(K3\) surfaces in characteristic \(p\). In: Manifolds-Tokyo 1973 (Proceedings of the International Conference on Tokyo, 1973), pp. 357-364. Univ. Tokyo Press, Tokyo (1975) · Zbl 0311.14007
[7] Shioda, T.; Inose, H.; Miyaoka, Y.; Peternell, T., On singular \(K3\) surfaces, Complex Analysis and Algebraic Geometry, 119-136 (1977), Tokyo: Iwanami Shoten, Tokyo · Zbl 0374.14006
[8] Wolf, B.; Hulek, K., Projective models of Shioda modular surfaces, Manuscr. Math., 50, 73-132 (1985) · Zbl 0599.14035
[9] Shimada, I., Projective models of the supersingular \(K3\) surface with Artin invariant 1 in characteristic 5, J. Algebra, 403, 273-299 (2014) · Zbl 1375.14127
[10] Shimada, Ichiro, Automorphisms of supersingular \(K3\) surfaces and Salem polynomials, Exp. Math., 25, 4, 389-398 (2016) · Zbl 1342.14082
[11] Maulik, D.; Poonen, B., Néron-Severi groups under specialization, Duke Math. J., 161, 11, 2167-2206 (2012) · Zbl 1248.14011
[12] Nikulin, VV, Description of automorphism groups of Enriques surfaces, Dokl. Akad. Nauk SSSR, 277, 6, 1324-1327 (1984)
[13] Kondō, S., Enriques surfaces with finite automorphism groups, Jpn. J. Math. (N.S.), 12, 2, 191-282 (1986) · Zbl 0616.14031
[14] Martin, G., Enriques surfaces with finite automorphism group in positive characteristic, Algebraic Geom., 6, 5, 592-649 (2019) · Zbl 1436.14067
[15] Vinberg, ÈB, The two most algebraic \(K3\) surfaces, Math. Ann., 265, 1, 1-21 (1983) · Zbl 0537.14025
[16] Dolgachev, I.; Keum, J., Birational automorphisms of quartic Hessian surfaces, Trans. Am. Math. Soc., 354, 8, 3031-3057 (2002) · Zbl 0994.14007
[17] Dolgachev, I., Salem numbers and Enriques surfaces, Exp. Math., 27, 3, 287-301 (2018) · Zbl 1404.14043
[18] Shimada, I.: The Elliptic Modular Surface of Level \(4\) and Its Reduction Modulo \(3\): Computational Data (2018). http://www.math.sci.hiroshima-u.ac.jp/ shimada/K3andEnriques.html
[19] The GAP Group. GAP - Groups, Algorithms, and Programming. Version 4.8.6 (2016). http://www.gap-system.org
[20] Segre, Beniamino, Forme e geometrie hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl., 4, 70, 1-201 (1965) · Zbl 0146.16703
[21] Bašmakov, MI; Faddeev, DK, Simultaneous representation of zero by a pair of quadratic quaternary forms, Vestn. Leningrad. Univ., 14, 19, 43-46 (1959) · Zbl 0094.01005
[22] Shioda, T., On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul., 39, 2, 211-240 (1990) · Zbl 0725.14017
[23] Shimada, I., Transcendental lattices and supersingular reduction lattices of a singular \(K3\) surface, Trans. Am. Math. Soc., 361, 2, 909-949 (2009) · Zbl 1187.14048
[24] Shimada, I., Lattices of algebraic cycles on Fermat varieties in positive characteristics, Proc. Lond. Math. Soc. (3), 82, 1, 131-172 (2001) · Zbl 1074.14508
[25] Hinonaka, Eriko: Abelian coverings of the complex projective plane branched along configurations of real lines. Mem. Am. Math. Soc. 105(502) (1993) · Zbl 0788.14054
[26] Shimada, I., Connected components of the moduli of elliptic \(K3\) surfaces, Mich. Math. J., 67, 3, 511-559 (2018) · Zbl 1420.14087
[27] Nikulin, V.V.: Weil linear systems on singular \(K3\) surfaces. In: Algebraic geometry and analytic geometry (Tokyo, 1990), ICM-90 Satellite Conference Proceedings, pp. 138-164. Springer, Tokyo (1991) · Zbl 0785.14021
[28] Hirotachi, A.; Sasakura, N.; Terasoma, T., Quadratic residue graph and Shioda elliptic modular surface \(S(4)\), Tokyo J. Math., 19, 2, 263-288 (1996) · Zbl 0904.14012
[29] Conway, JH, The automorphism group of the \(26\)-dimensional even unimodular Lorentzian lattice, J. Algebra, 80, 1, 159-163 (1983) · Zbl 0508.20023
[30] Shimada, I., An algorithm to compute automorphism groups of \(K3\) surfaces and an application to singular \(K3\) surfaces, Int. Math. Res. Not. IMRN, 22, 11961-12014 (2015) · Zbl 1333.14034
[31] Nikulin, VV, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat., 43, 1, 111-177 (1979) · Zbl 0408.10011
[32] Ogus, A: Supersingular \(K3\) crystals. In: Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Volume 64 of Astérisque, vol. II, pp. 3-86. Society of Mathematics, Paris (1979) · Zbl 0435.14003
[33] Ogus, A.; Chambert-Loir, A.; Lu, J-H; Ruzhansky, M.; Tschinkel, Y., A crystalline Torelli theorem for supersingular \(K3\) surfaces, Arithmetic and geometry, 361-394 (1983), Boston: Birkhäuser, Boston · Zbl 0596.14013
[34] Pjateckiĭ-Šapiro, II; Šafarevič, IR, Torelli’s theorem for algebraic surfaces of type \({\rm K}3\), Izv. Akad. Nauk SSSR Ser. Mat., 35, 530-572 (1971) · Zbl 0219.14021
[35] Bragg, D., Lieblich, M.: Twistor Spaces for Supersingular K3 Surfaces (2018). arXiv:1804.07282v5
[36] Kondō, S., The automorphism group of a generic Jacobian Kummer surface, J. Algebraic Geom., 7, 3, 589-609 (1998) · Zbl 0948.14034
[37] Shimada, I.; Faber, C.; Farkas, G.; van der Geer, G., The automorphism groups of certain singular \(K3\) surfaces and an Enriques surface, K3 Surfaces and Their Moduli, Progress in Mathematics, 297-343 (2016), Cham: Birkhäuser/Springer, Cham · Zbl 1349.14133
[38] Shimada, I., Veniani, D.C.: Enriques involutions on singular \(K3\) surfaces of small discriminants. arXiv:1902.00229(To appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5))
[39] Kondō, S., The maximum order of finite groups of automorphisms of \(K3\) surfaces, Am. J. Math., 121, 6, 1245-1252 (1999) · Zbl 0978.14043
[40] Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math., 32, 361 (1967) · Zbl 0153.22301
[41] Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents I, Inst. Hautes Études Sci. Publ. Math., 11, 167 (1961)
[42] Matsusaka, T.; Mumford, D., Two fundamental theorems on deformations of polarized varieties, Am. J. Math., 86, 668-684 (1964) · Zbl 0128.15505
[43] Lieblich, M.; Maulik, D., A note on the cone conjecture for K3 surfaces in positive characteristic, Math. Res. Lett., 25, 6, 1879-1891 (2018) · Zbl 1420.14086
[44] Horikawa, E., On deformations of quintic surfaces, Invent. Math., 31, 1, 43-85 (1975) · Zbl 0317.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.