×

Beta-expansion and continued fraction expansion of real numbers. (English) Zbl 1448.11150

Let \(\beta>1 \) be a real number and \(T_\beta: [0,1) \to [0,) \) be a the \(\beta\)-transformation defined as \(T_\beta(x)=\beta x-[\beta x]. \) Every \(x \in [0,1) \) can be uniquely expanded into a finite or infinite series, i.e., \[ x=\frac{\varepsilon_1(x)}{\beta}+\frac{\varepsilon_2(x)}{\beta^2}+\dots+\frac{\varepsilon_n(x)}{\beta^n}+\dots, \] where \(\varepsilon_1(x)=[\beta x]\) and \(\varepsilon_{n+1}(x)=\varepsilon_1\big(T^n_\beta x\big)\) for all \(n\geq 1 \). This representation is called the \(\beta\)-expansion of \(x\) and denoted \((\varepsilon_1(x),\varepsilon_2(x),\dots)\).
Let \(T:[0,1) \to [0,1) \) be the Gauss transformation given by \(T(0):=0, T(x):=1/x -[1/x] \) if \(x \in (0,1).\) Any irrational number \(x\in [0,1) \) can be written as \[ x=\cfrac{1}{a_1(x)+\cfrac{1}{a_2(x)+\genfrac{}{}{0pt}{0}{}{\ddots + \cfrac{1}{a_n(x)+\genfrac{}{}{0pt}{0}{}{\ddots }}}}}, \] where \(a_1(x)=[1/x] \) and \(a_{n+1}(x)=a_1\big(T^n x \big) \) for all \(n \geq 1. \) This representation is called the continued fraction expansion of \(x\) and denoted \([a_1(x),a_2(x),\dots]\). Let \(J(\varepsilon_1(x),\dots,\varepsilon_n(x))\) and \(I(a_1(x),\dots,a_m(x))\) be the cylinders of the \(\beta\)-expansion and the continued fraction expansion respectively and \[ k_n(x)=\sup \{m\geq 0: J(\varepsilon_1(x),\dots,\varepsilon_n(x)) \subseteq I(a_1(x),\dots,a_m(x)) \} \] The following theorem is proved in this article.
Theorem. Let \(\beta>1 \) be a real number. For any \(\varepsilon >0, \) there exist positive \(A\) and \(\alpha \) (both depending on \(\beta\) and \(\alpha \) ) such that for all \( n\geq 1\), \[ \lambda \bigg\{ x\in [0,1) : \bigg|\frac{k_n(x)}{n}-\frac{6\log 2 \log \beta }{\pi^2} \bigg|\geq \varepsilon \bigg\} \leq A e^{-\alpha n}, \] \(\lambda\) is the Lebesgue measure.

MSC:

11K50 Metric theory of continued fractions
11A63 Radix representation; digital problems
37A50 Dynamical systems and their relations with probability theory and stochastic processes
60F15 Strong limit theorems

Citations:

Zbl 0881.11063

References:

[1] B. Adamczewski and Y. Bugeaud, Dynamics for β-shifts and Diophantine approximation, Ergodic Theory Dynam. Systems 27 (2007), 1695-1711. · Zbl 1140.11035
[2] L. Barreira and G. Iommi, Partial quotients of continued fractions and β-expansions, Nonlinearity 21 (2008), 2211-2219. · Zbl 1154.37327
[3] V. Berth´e, Numeration and discrete dynamical systems, Computing 94 (2012), 369-387. · Zbl 1269.11009
[4] F. Blanchard, β-expansions and symbolic dynamics, Theoret. Computer Sci. 65 (1989), 131-141. · Zbl 0682.68081
[5] Y. Bugeaud and B. Wang, Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions, J. Fractal Geom. 1 (2014), 221-241. · Zbl 1309.11062
[6] K. Dajani and A. Fieldsteel, Equipartition of interval partitions and an application to number theory, Proc. Amer. Math. Soc. 129 (2001), 3453-3460. · Zbl 0999.11041
[7] K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Math. Assoc. Amer., Washington, DC, 2002. · Zbl 1033.11040
[8] C. Faivre, On decimal and continued fraction expansions of a real number, Acta Arith. 82 (1997), 119-128. · Zbl 0881.11063
[9] C. Faivre, A central limit theorem related to decimal and continued fraction expansion, Arch. Math. 70 (1998), 455-463. · Zbl 0921.11041
[10] C. Faivre, On calculating a continued fraction expansion from a decimal expansion, Acta Sci. Math. (Szeged) 67 (2001), 505-519. · Zbl 1017.11040
[11] A.-H. Fan, L.-M. Liao, B.-W. Wang and J. Wu, On Khinchin exponents and Lyapunov exponents of continued fractions, Ergodic Theory Dynam. Systems 29 (2009), 73-109. · Zbl 1158.37019
[12] A.-H. Fan and B.-W. Wang, On the lengths of basic intervals in beta expansions, Nonlinearity 25 (2012), 1329-1343. · Zbl 1256.11044
[13] L.-L. Fang, M. Wu and B. Li, Limit theorems related to beta-expansion and continued fraction expansion, J. Number Theory 163 (2016), 385-405. · Zbl 1408.11076
[14] L.-L. Fang, M. Wu and B. Li, Approximation orders of real numbers by βexpansions, arXiv:1603.08402 (2016).
[15] A. Gel’fond, A common property of number systems, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 809-814 (in Russian). · Zbl 0092.27702
[16] F. Hofbauer, β-shifts have unique maximal measure, Monatsh. Math. 85 (1978), 189-198. · Zbl 0346.28013
[17] P. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. USA 33 (1947), 25-31. · Zbl 0030.20101
[18] I. Ibragimov, A theorem from the metric theory of continued fractions, Vestnik Leningrad. Univ. 16 (1961), 13-24 (in Russian). · Zbl 0127.28903
[19] M. Kesseb¨ohmer and B. Stratmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates, J. Reine Angew. Math. 605 (2007), 133-163. · Zbl 1117.37003
[20] A. Ya. Khinchin, Continued Fractions, Univ. of Chicago Press, Chicago, 1964. · Zbl 0117.28601
[21] D.-R. Kong and W.-X. Li, Hausdorff dimension of unique beta expansions, Nonlinearity 28 (2015), 187-209. · Zbl 1346.37011
[22] B. Li and J. Wu, Beta-expansion and continued fraction expansion, J. Math. Anal. Appl. 339 (2008), 1322-1331. · Zbl 1137.11053
[23] G. Lochs, Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch, Abh. Math. Sem. Univ. Hamburg 27 (1964), 142-144. · Zbl 0124.28003
[24] D. Mayer, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys. 130 (1990), 311-333. · Zbl 0714.58018
[25] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416. · Zbl 0099.28103
[26] W. Philipp, Some metrical theorems in number theory, Pacific J. Math. 20 (1967), 109-127. · Zbl 0144.04201
[27] W. Philipp und O. Stackelberg, Zwei Grenzwerts¨atze f¨ur Kettenbr¨uche, Math. Ann. 181 (1969), 152-154. · Zbl 0164.05602
[28] M. Pollicott and H. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Comm. Math. Phys. 207 (1999), 145-171. · Zbl 0960.37008
[29] A. R´enyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493. · Zbl 0079.08901
[30] J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997), 675-694. · Zbl 0908.58017
[31] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278. · Zbl 0494.10040
[32] J. Wu, Continued fraction and decimal expansions of an irrational number, Adv. Math. 206 (2006), 684-694. · Zbl 1156.11033
[33] J. Wu, An iterated logarithm law related to decimal and continued fraction expansions, Monatsh. Math. 153 (2008), 83-87. · Zbl 1136.11050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.