×

Image reconstruction through metamorphosis. (English) Zbl 1447.94005

Summary: The paper describes a method for reconstructing an image from noisy and indirect observations by registering, via metamorphosis, a template. The image registration part consists of two components, one is a geometric deformation that moves intensities without changing them and the other that changes intensity values. Unlike a registration with only geometrical deformation, this framework gives good results also when intensities of the template are poorly chosen. It also allows for appearance of a new structure. The approach is applicable to general inverse problems in imaging and we prove existence, stability and convergence, which implies that the method is a well-defined regularisation method. We also present several numerical examples from tomography.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

References:

[1] Arguillere S, Trélat E, Trouvé A and Younes L 2015 Shape deformation analysis from the optimal control viewpoint J. Math. Pures Appl.104 139-78 · Zbl 1319.49064 · doi:10.1016/j.matpur.2015.02.004
[2] Bauer M, Bruveris M and Michor P W 2014 Overview of the geometries of shape spaces and diffeomorphism groups J. Math. Imaging Vis.50 60-97 · Zbl 1310.58005 · doi:10.1007/s10851-013-0490-z
[3] Beg M F, Miller M I, Trouvé A and Younes L 2005 Computing large deformation metric mappings via geodesic flows of diffeomorphisms Int. J. Comput. Vis.61 139-57 · Zbl 1477.68459 · doi:10.1023/B:VISI.0000043755.93987.aa
[4] Bertero M, Lantéri H and Zanni L 2008 Iterative image reconstruction: a point of view Proc. of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation(Pisa, Italy,) ed Y Censor et al pp 37-63
[5] Bladt E, Pelt D M, Bals S and Batenburg K J 2015 Electron tomography based on highly limited data using a neural network reconstruction technique Ultramicroscopy158 81-8 · doi:10.1016/j.ultramic.2015.07.001
[6] Brown L G 1992 A survey of image registration techniques ACM Comput. Surv.24 325-76 · doi:10.1145/146370.146374
[7] Bruveris M and Holm D D 2015 Geometry of image registration: the diffeomorphism group, momentum maps Geometry, Mechanics and Dynamics ed D E Chang et al (Berlin: Springer) pp 19-56 · Zbl 1348.92094 · doi:10.1007/978-1-4939-2441-7_2
[8] Bruveris M, Risser L and Vialard F X 2012 Mixture of kernels and iterated semidirect product of diffeomorphisms groups Multiscale Model. Simul.10 1344-68 · Zbl 1262.49005 · doi:10.1137/110846324
[9] Charon N, Charlier B and Trouvé A 2016 Metamorphoses of functional shapes in Sobolev spaces Foundations of Computational Mathematics18 1535-96 · Zbl 1403.49021 · doi:10.1007/s10208-018-9374-3
[10] Chen C, Gris B and Oktem O 2019 A new variational model for joint image reconstruction and motion estimation in spatiotemporal imaging SIAM J. Imaging Sci.12 1686-719 · Zbl 1434.68585 · doi:10.1137/18m1234047
[11] Chen C and Öktem O 2018 Indirect image registration with large diffeomorphic deformations SIAM J. Imaging Sci.11 575-617 · Zbl 1401.94013 · doi:10.1137/17M1134627
[12] Chen C and Xu G 2012 Gradient-flow-based semi-implicit finite-element method and its convergence analysis for image reconstruction Inverse Problems28 035006 · Zbl 1236.78029 · doi:10.1088/0266-5611/28/3/035006
[13] Chen C and Xu G 2016 A new linearized split Bregman iterative algorithm for image reconstruction in sparse-view x-ray computed tomography Comput. Math. Appl.71 1537-59 · Zbl 1443.92107 · doi:10.1016/j.camwa.2016.01.003
[14] Durrleman S, Prastawa M, Charon N, Korenberg J R, Joshi S, Gerig G and Trouvé A 2014 Morphometry of anatomical shape complexes with dense deformations and sparse parameters NeuroImage101 35-49 · doi:10.1016/j.neuroimage.2014.06.043
[15] Effland A, Rumpf M and Schäfer F 2018 Image extrapolation for the time discrete metamorphosis model: existence and applications SIAM J. Imaging Sci.11 834-62 · Zbl 1397.65032 · doi:10.1137/17M1129544
[16] Gigengack F, Ruthotto L, Burger M, Wolters C H, Jiang X and Schäfers K 2010 Motion correction of cardiac pet using mass-preserving registration IEEE Nuclear Science Symp. & Medical Imaging Conf. pp 3317-9 · doi:10.1109/NSSMIC.2010.5874418
[17] Gigengack F, Ruthotto L, Burger M, Wolters C H, Jiang X and Schäfers K P 2011 Mass-preserving motion correction of pet: Displacement field versus spline transformation IEEE Nuclear Science Symp. Conf. Record pp 3088-90 · doi:10.1109/NSSMIC.2010.5874418
[18] Gigengack F, Ruthotto L, Burger M, Wolters C H, Jiang X and Schafers K P 2011 Motion correction in dual gated cardiac pet using mass-preserving image registration IEEE Trans. Med. Imaging31 698-712 · doi:10.1109/TMI.2011.2175402
[19] Grasmair M 2010 Generalized Bregman distances and convergence rates for non-convex regularization methods Inverse Problems26 115014 · Zbl 1228.65086 · doi:10.1088/0266-5611/26/11/115014
[20] Gullberg G T, Reutter B W, Sitek A, Maltz J S and Budinger T F 2010 Dynamic single photon emission computed tomography—basic principles and cardiac applications Phys. Med. Biol.55 R111-91 · doi:10.1088/0031-9155/55/20/R01
[21] Hinkle J, Szegedi M, Wang B, Salter B and Joshi S 2012 4D CT image reconstruction with diffeomorphic motion model Med. Image Anal.16 1307-16 · doi:10.1016/j.media.2012.05.013
[22] Mang A and Biros G 2016 Constrained H1-regularization schemes for diffeomorphic image registration SIAM J. Imaging Sci.9 1154-94 · Zbl 1381.94022 · doi:10.1137/15M1010919
[23] Mang A and Ruthotto L 2017 A Lagrangian Gauss-Newton-Krylov solver for mass-and intensity-preserving diffeomorphic image registration SIAM J. Sci. Comput.39 B860-85 · Zbl 1375.65034 · doi:10.1137/17M1114132
[24] Markoe A 2006 Analytic Tomography(Encyclopedia of Mathematics and its Applications vol 106) (Cambridge: Cambridge University Press) · Zbl 1341.44001 · doi:10.1017/CBO9780511530012
[25] Miller M I, Younes L and Trouvé A 2014 Diffeomorphometry and geodesic positioning systems for human anatomy Technology2 36-43 · doi:10.1142/S2339547814500010
[26] Natterer F 2001 The Mathematics of Computerized Tomography(Classics in Applied Mathematics vol 32) (Philadelphia, PA: SIAM) · Zbl 0973.92020 · doi:10.1137/1.9780898719284
[27] Natterer F and Wübbeling F 2001 Mathematical Methods in Image Reconstruction (Philadelphia, PA: Society for Industrial and Applied Mathematics) · Zbl 0974.92016 · doi:10.1137/1.9780898718324
[28] Neumayer S, Persch J and Steidl G 2019 Regularization of inverse problems via time discrete geodesics in image spaces Inverse Problems35 055005 · Zbl 1448.94027 · doi:10.1088/1361-6420/ab038a
[29] Öktem O, Chen C, Domaniç N O, Ravikumar P and Bajaj C 2017 Shape based image reconstruction using linearised deformations Inverse Problems33 035004 · Zbl 1372.35369 · doi:10.1088/1361-6420/aa55af
[30] Risser L, Vialard F X, Wolz R, Murgasova M, Holm D D and Rueckert D 2011 Simultaneous multi-scale registration using large deformation diffeomorphic metric mapping IEEE Trans. Med. Imaging30 1746-59 · doi:10.1109/TMI.2011.2146787
[31] Schwarz A and Leach M 2000 Implications of respiratory motion for the quantification of 2D MR spectroscopic imaging data in the abdomen Phys. Med. Biol.45 2105—116 · doi:10.1088/0031-9155/45/8/304
[32] Sidky E, Jørgensen J and Pan X 2012 Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm Phys. Med. Biol.57 3065 · doi:10.1088/0031-9155/57/10/3065
[33] Sidky E, Kao C and Pan X 2006 Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT J. X-ray Sci. Technol.14 119-39
[34] Sommer S, Nielsen M, Lauze F and Pennec X 2011 A multi-scale kernel bundle for LDDMM: towards sparse deformation description across space and scales Biennial Int. Conf. on Information Processing in Medical Imaging (Berlin: Springer) pp 624-35 · doi:10.1007/978-3-642-22092-0_51
[35] Sotiras A, Davatzikos C and Paragios N 2013 Deformable medical image registration: a survey IEEE Trans. Med. Imaging32 1153-90 · doi:10.1109/TMI.2013.2265603
[36] Trouvé A and Younes L 2005 Metamorphoses through Lie group action Found. Comput. Math.5 173-98 · Zbl 1099.68116 · doi:10.1007/s10208-004-0128-z
[37] Wang Y, Vidan E and Bergman G 1999 Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography Radiology213 751-758 · doi:10.1148/radiology.213.3.r99dc41751
[38] Wang Z, Bovik A C, Sheikh H R and Simoncelli E P 2004 Image quality assessment: from error visibility to structural similarity IEEE Trans. Image Process.13 600-12 · doi:10.1109/TIP.2003.819861
[39] Wirgin A 2004 The inverse crime (arXiv:0401050)
[40] Younes L 2010 Shapes and Diffeomorphisms(Applied Mathematical Sciences vol 171) (Berlin: Springer) (https://doi.org/10.1007/978-3-662-58496-5) · Zbl 1205.68355 · doi:10.1007/978-3-642-12055-8
[41] Zitova B and Flusser J 2003 Image registration methods: a survey Image Vis. Comput.21 977-1000 · doi:10.1016/S0262-8856(03)00137-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.