×

Velocity-free prescribed performance control for spacecraft hovering over an asteroid with input saturation. (English) Zbl 1447.93246

Summary: This paper investigates the input constrained prescribed performance control (PPC) for asteroid hovering merely using position measurements. The controller guarantees the position error converges to a prescribed residual set with desired transient performance in the absence of sensed velocities. First, the position error is transformed into a new error variable and a proper error dynamic system is established according to the PPC methodology, based on which, a backstepping prescribed performance controller is devised with the input saturation handled by an auxiliary system. Then, a state observer is developed by employing the immersion and invariance (I&I) technique, and the estimate is substituted for the velocity in the controller; meanwhile, the auxiliary system is improved to handle the input saturation of the velocity-free controller. The closed-loop systems stability is established via Lyapunov analysis. Finally, simulations are conducted to validate the effectiveness of the proposed scheme.

MSC:

93C95 Application models in control theory
93B52 Feedback control
93B53 Observers
Full Text: DOI

References:

[1] Furfaro, R., Hovering in asteroid dynamical environments using higher-order sliding control, J. Guid. Control Dyn., 38, 2, 263-279 (2014)
[2] Zhang, B.; Cai, Y.; Li, F., Adaptive double-saturated control for hovering over an asteroid, Adv. Space. Res, 63, 7, 2035-2051 (2019)
[3] Gui, H.; Ruiter, A. H.J., Control of asteroid-hovering spacecraft with disturbance rejection using position-only measurements, J. Guid. Control Dyn., 40, 10, 2401-2416 (2017)
[4] Zhang, B.; Cai, Y., Velocity-free saturated control for hovering over an asteroid with disturbance rejection, IEEE Access, 7, 69292-69303 (2019)
[5] Sawai, S.; Scheeres, D. J., Control of hovering spacecraft using altimetry, J. Guid. Control Dyn., 25, 4, 786-795 (2002)
[6] Broschart, S. B.; Scheeres, D. J., Control of hovering spacecraft near small bodies: application to asteroid 25143 Itokawa, J. Guid. Control Dyn., 28, 2, 343-354 (2005)
[7] Broschart, S. B.; Scheeres, D. J., Boundedness of spacecraft hovering under dead-band control in time-invariant systems, J. Guid. Control Dyn., 30, 2, 601-610 (2007)
[8] Gaudet, B.; Furfaro, R., Robust spacecraft hovering near small bodies in environments with unknown dynamics using reinforcement learning, Proceedings of AIAA/AAS Astrodynamics Specialist Conference (2012), Minneapolis, Minnesota
[9] Nazari, M.; Wauson, R.; Critz, T.; Butcher, E. A.; Scheeres, D. J., Observer-based body-frame hovering control over a tumbling asteroid, Acta Astronaut., 102, 2014, 124-139 (2014)
[10] Lee, D.; Sanyal, A. K.; Butcherb, E. A.; Scheeres, D. J., Almost global asymptotic tracking control for spacecraft body-fixed hovering over an asteroid, Aerosp. Sci. Technol., 38, 2014, 105-115 (2014)
[11] Lee, D.; Sanyal, A. K.; Butcher, E. A.; Scheeres, D. J., Finite-time control for spacecraft body-fixed hovering over an asteroid, IEEE Trans. Aerosp. Electron. Syst., 51, 1, 506-519 (2015)
[12] Lee, D.; Vukovich, G., Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid, Aerosp. Sci. Technol., 46, 2015, 471483 (2015)
[13] Lee, D.; Vukovich, G., Adaptive finite-time control for spacecraft hovering over an asteroid, IEEE Trans. Aerosp. Electron. Syst., 52, 3, 1183-1196 (2016)
[14] Yang, H.; Bai, X.; Baoyin, H., Finite-time control for asteroid hovering and landing via terminal sliding-mode guidance, Acta Astronaut., 132, 2017, 78-89 (2017)
[15] Zeng, X.-Y.; Jiang, F.-H.; Li, J.-F., Asteroid body-fixed hovering using nonideal solar sails, Res. Astron. Astrophys., 15, 4, 597-607 (2015)
[16] Zeng, X.; Gong, S.; Li, J.; Alfriend, K. T., Solar sail body-fixed hovering over elongated asteroids, J. Guid. Control Dyn., 39, 6, 1223-1231 (2016)
[17] D’Ambrosio, A.; Circi, C.; Zeng, X., Solar-photon sail hovering orbits about single and binary asteroids, Adv. Space Res., 63, 11, 3691-3705 (2019)
[18] Guelman, M. M., Closed-loop control for global coverage and equatorial hovering about an asteroid, Acta Astronaut., 137, 353-361 (2017)
[19] Zhang, B.; Cai, Y., Immersion and invariance based adaptive backstepping control for body-fixed hovering over an asteroid, IEEE Access, 7, 34850-34861 (2019)
[20] Zhang, Y.; Zeng, X.; Zhang, F., Spacecraft hovering flight in a binary asteroid system by using fuzzy logic control, IEEE Trans. Aerosp. Electron. Syst., 55, 6, 3246-3258 (2019)
[21] to be published.
[22] to be published.
[23] Hu, J.; Zhang, H., Bounded output feedback of rigid-body attitude via angular velocity observers, J. Guid. Control Dyn., 36, 4, 1240-1247 (2013)
[24] Yang, S.; Akella, M. R.; Mazenc, F., Immersion and invariance observers for gyro-free attitude control systems, J. Guid. Control Dyn., 39, 11, 2567-2574 (2016)
[25] Wen, H.; Yue, X.; Li, P.; Yuan, J., Fast spacecraft adaptive attitude tracking control through immersion and invariance design, Acta Astronaut., 139, 2017, 77-84 (2017)
[26] Yang, S.; Akella, M. R.; Mazenc, F., Dynamically scaled immersion and invariance adaptive control for Euler Lagrange mechanical systems, J. Guid. Control Dyn., 40, 11, 2844-2856 (2017)
[27] Lee, K. W.; Singh, S. N., Immersion and invariance-based adaptive wing rock control with nonlinear terminal manifold, Nonlinear Dyn., 88, 2017, 955972 (2017)
[28] Lee, K. W.; Singh, S. N., Immersion-and invariance-based adaptive control of asteroid-orbiting and – hovering spacecraft, J. Astronaut. Sci., 66, 4, 537-553 (2019)
[29] Bechlioulis, C. P.; Rovithakis, G. A., Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance, IEEE Trans. Autom. Control, 53, 9, 2090-2099 (2008) · Zbl 1367.93298
[30] Bechlioulis, C. P.; Rovithakis, G. A., Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems, IEEE Trans. Autom. Control, 55, 5, 1220-1226 (2010) · Zbl 1368.93288
[31] Zhang, C.; Ma, G.; Sun, Y.; Li, C., Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression, Nonlinear Dyn., 96, 3, 1909-1926 (2019)
[32] Zhang, Y.; Wang, S.-h.; Chang, B.; Wu, W.-h., Adaptive constrained backstepping controller with prescribed performance methodology for carrier-based UAV, Aerosp. Sci. Technol., 92, 55-65 (2019)
[33] Jabbari Asl, H.; Narikiyo, T.; Kawanishi, M., Bounded-input prescribed performance control of uncertain EulerLagrange systems, IET Contr. Theory Appl., 13, 1, 17-26 (2019) · Zbl 1434.93039
[34] Zhang, C.; Ma, G.; Sun, Y.; Li, C., Observer-based prescribed performance attitude control for flexible spacecraft with actuator saturation, ISA Trans., 89, 84-95 (2019)
[35] Wei, C.; Luo, J.; Dai, H.; Duan, G., Learning-based adaptive attitude control of spacecraft formation with guaranteed prescribed performance, IEEE Trans. Cybern., 49, 11, 4004-4016 (2019)
[36] Wang, F.; Hou, M.; Cao, X.; Duan, G., Event-triggered backstepping control for attitude stabilization of spacecraft, J. Frankl. Inst., 356, 16, 9474-9501 (2019) · Zbl 1423.93260
[37] Wang, Y.; Tang, S.; Guo, J.; Wang, X.; Liu, C., Fuzzy-logic-based fixed-time geometric backstepping control on so(3) for spacecraft attitude tracking, IEEE Trans. Aerosp. Electron. Syst., 55, 6, 2938-2950 (2019)
[38] Wang, Y. C.; Chen, W. S.; Zhang, S. X.; Zhu, J. W.; Cao, L. J., Command-filtered incremental backstepping controller for small unmanned aerial vehicles, J. Guid. Control Dyn., 41, 4, 952-965 (2018)
[39] Zhang, B.; Tang, S.; Pan, B., Robust trajectory tracking guidance for low l/d lunar return vehicles using command filtered backstepping approach, J. Aerosp. Eng., 31, 2, 04017105 (2018)
[40] Krstić, M.; Kanellakopoulos, I.; Kokotović, P., Nonlinear and Adaptive Control Design (1995), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 0763.93043
[41] Astolfi, A.; Karagiannis, D.; Ortega, R., Nonlinear and Adaptive Control with Applications (2007), Springer: Springer London · Zbl 1119.93059
[42] Yu, J.; Shi, P.; Zhao, L., Finite-time command filtered backstepping control for a class of nonlinear systems, Automatica, 92, 173-180 (2018) · Zbl 1388.93047
[43] Werner, R. A.; Scheeres, D. J., Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia, Celest. Mech. Dyn. Astron., 65, 313-344 (1997) · Zbl 0881.70008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.