×

Robust output tracking of constrained perturbed linear systems via model predictive sliding mode control. (English) Zbl 1447.93075

Summary: A robustifying strategy for constrained linear multivariable systems is proposed. A combination of tracking model predictive control with output integral sliding mode techniques is used to completely reject bounded matched perturbations. It can be guaranteed that all constraints on inputs, states, and outputs are satisfied although only output information is used. Finally, real-world experiments with an unstable plant are presented in order to demonstrate the validity and the effectiveness of the proposed approach.

MSC:

93B35 Sensitivity (robustness)
93C05 Linear systems in control theory
93B45 Model predictive control
93B12 Variable structure systems

References:

[1] BorrelliF, BemporadA, MorariM. Predictive Control for Linear and Hybrid Systems. Cambridge, UK: Cambridge University Press; 2017. · Zbl 1365.93003
[2] RawlingsJB, MayneD. Model Predictive Control: Theory and Design. Los Gatos, CA: Nob Hill Publishing; 2016.
[3] Fernandez‐CamachoEF, Bordons‐AlbaC. Model Predictive Control. London, UK: Springer; 2007.
[4] MaciejowskiJ. Predictive Control With Constraints. London, UK: Pearson; 2002.
[5] MayneD, RawlingsJB, RaoCV, ScokaertPOM. Constrained model predictive control: stability and optimality. Automatica. 2000;36:789‐814. · Zbl 0949.93003
[6] LimonD, AlvaradoI, AlamoT, CamachoEF. MPC for tracking piecewise constant references for constrained linear systems. Automatica. 2008;44:2382‐2387. · Zbl 1153.93338
[7] MayneD, FalugiP. Generalized stabilizing conditions for model predictive control. J Optim Theory Appl. 2016;169(3):719‐734. · Zbl 1342.90225
[8] MayneD. Model predictive control: recent developments and future promise. Automatica. 2014;50:2967‐2986. · Zbl 1309.93060
[9] ShtesselY, EdwardsC, FridmanL, LevantA. Sliding Mode Control and Observation. Basel, Switzerland: Birkhäuser; 2013.
[10] EdwardsC, SpurgeonS. Sliding Mode Control: Theory and Applications. London, UK: Taylor & Francis; 1998.
[11] UtkinV. Sliding Modes in Control and Optimization. New York, NY: Springer; 1992. · Zbl 0748.93044
[12] Garcia‐GabinW, ZambranoD, CamachoEF. Sliding mode predictive control of a solar air conditioning plant. Control Eng Pract. 2009;17(6):652‐663.
[13] PerezM, JimenezE, CamachoEF. Robust stability analysis and tuning of a predictive sliding mode controller. Eur J Control. 2010;16(3):275‐288. · Zbl 1198.93072
[14] ErrouissiR, YangJ, ChenW‐H, Al‐DurraA. Robust nonlinear generalised predictive control for a class of uncertain nonlinear systems via an integral sliding mode approach. Int J Control. 2016;89(8):1698‐1710. · Zbl 1353.93040
[15] UtkinV, ShiJ. Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the 35th IEEE Conference on Decision and Control; 1996; Kobe, Japan.
[16] RubagottiM, RaimondoDM, FerraraA, MagniL. Robust model predictive control with integral sliding mode in continuous‐time sampled‐data nonlinear systems. IEEE Trans Autom Control. 2011;56(3):556‐570. · Zbl 1368.93361
[17] RaimondoDM, RubagottiM, JonesCN, MagniL, FerraraA, MorariM. Multirate sliding mode disturbance compensation for model predictive control. Int J Robust Nonlinear Control. 2015;25(16):2984‐3003. · Zbl 1327.93108
[18] UtkinV, GuldnerJ, ShiJ. Sliding Mode Control in Electromechanical Systems. London, UK: Taylor & Francis; 1999.
[19] SteinbergerM, CastilloI, HornM, FridmanL. Model predictive output integral sliding mode control. In: Proceedings of the 14th International Workshop on Variable Structure Systems; 2016; Nanjing, China.
[20] BejaranoFJ, FridmanL, PoznyakA. Output integral sliding mode control based on algebraic hierarchical observer. Int J Robust Nonlinear Control. 2007;80(3):443‐453. · Zbl 1120.93013
[21] FridmanL, PoznyakA, BejaranoFJ. Robust Output LQ Optimal Control via Integral Sliding Modes. Basel, Switzerland: Birkhäuser; 2014. · Zbl 1288.93001
[22] FilippovAF. Differential Equations with Discontinuous Righthand Dides. Dordrecht, The Netherlands: Springer; 1988. Mathematics and Its Applications; vol. 18. · Zbl 0664.34001
[23] CastanosF, FridmanL. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans Autom Control. 2006;51(5):853‐858. · Zbl 1366.93094
[24] BejaranoFJ, FridmanL, PoznyakA. Exact state estimation for linear systems with unknown inputs based on hierarchical super‐twisting algorithm. Int J Control. 2007;17(18):1734‐1753. · Zbl 1131.93011
[25] KalmanR, HoBL, NarendraN. Controllability of linear dynamical systems. Contrib Differ Equ. 1963;1:198‐213. · Zbl 0151.13303
[26] AltenbuchnerM. Aufbau und Regelung des Labormodells Pendubot [master’s thesis]. Graz, Austria: Graz University of Technology; 2007.
[27] Quanser. QuaRC real‐time control software. https://www.quanser.com. Accessed August 16, 2018.
[28] Mathworks. MATLAB for Artificial Intelligence. https://www.mathworks.com. Accessed August 16, 2018.
[29] FerreauHJ, KirchesC, PotschkaA, BockHG, DiehlM. qpOASES: a parametric active‐set algorithm for quadratic programming. Math Program Comput. 2014;6(4):327‐363. · Zbl 1302.90146
[30] GilbertEG, TanKTT. Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans Autom Control. 1991;36(9):1008‐1020. · Zbl 0754.93030
[31] HercegM, KvasnicaM, JonesCN, MorariM. Multi‐parametric toolbox 3.0. In: Proceedings of the European Control Conference; 2013; Zürich, Switzerland. https://control.ee.ethz.ch/∼mpt
[32] CastilloI, SteinbergerM, FridmanL, MorenoJA, HornM. Saturated super‐twisting algorithm: Lyapunov based approach. Paper presented at: 14th International Workshop on Variable Structure Systems; 2016; Nanjing, China.
[33] CastilloI, SteinbergerM, FridmanL, MorenoJ, HornM. Saturated super‐twisting algorithm based on perturbation estimator. Paper presented at: 14th International Workshop on Variable Structure Systems; 2016; Nanjing, China.
[34] Pérez‐VenturaU, FridmanL. When is it reasonable to implement the discontinuous sliding‐mode controllers instead of the continuous ones? Frequency domain criteria. Int J Robust Nonlinear Control. 2019;29(3):810‐828. · Zbl 1411.93043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.