×

Modelling populations of Lygus hesperus on cotton fields in the San Joaquin Valley of California: the importance of statistical and mathematical model choice. (English) Zbl 1447.92550

Summary: Understanding the population dynamics of herbivorous insects is critical to developing and implementing effective pest control protocols. In the context of inverse problems, we explore the dynamic effects of pesticide treatments on Lygus hesperus, a common pest of cotton in the western United States. Fitting models to field data, we explore the topic of model selection for an appropriate mathematical model and corresponding statistical models, and use techniques including ANOVA-based model comparison tests and residual plot analysis to make the best selections. In addition we explore the topic of data information content: in this example, we are testing the question of whether data, as it is currently collected, can support time-dependent parameter estimation. Furthermore, we investigate the statistical assumptions often haphazardly made in the process of parameter estimation and consider the implications of unfounded assumptions.

MSC:

92D45 Pest management
92D25 Population dynamics (general)
62P10 Applications of statistics to biology and medical sciences; meta analysis
92-10 Mathematical modeling or simulation for problems pertaining to biology

Software:

Prism

References:

[1] H.T. Banks and B.G. Fitzpatrick, Statistical methods for model comparison in parameter estimation problems for distributed systems, J. Math. Biol. 28 (1990), pp. 501-527. doi: 10.1007/BF00164161[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0732.62061
[2] H.T. Banks and H.T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, New York, 2009. [Crossref], [Google Scholar] · Zbl 1402.00037
[3] H.T. Banks, J. Catenacci, and S. Hu, Use of difference-based methods to explore statistical and mathematical model discrepancy in inverse problems, CRSC-TR15-05, Center for Research in Scientific Computation, N.C. State University, Raleigh, NC; Revised, Sept; J. Inverse Ill-Posed Problems, 2015, submitted. [Google Scholar] · Zbl 1468.62260
[4] H.T. Banks, S. Hu, and W.C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty, CRC Press, New York, 2014. [Crossref], [Google Scholar] · Zbl 1296.00029
[5] H.T. Banks, Z.R. Kenz, and W.C. Thompson, An extension of RSS-based model comparison tests for weighted least squares, Intl. J. Pure Appl. Math. 79 (2012), pp. 155-183. [Google Scholar] · Zbl 1402.62025
[6] J.E. Banks, H.T. Banks, K. Rinnovatore, and C.M. Jackson, Optimal sampling frequency and timing of threatened tropical bird populations: A modeling approach, Ecol. Model. 303 (2014), pp. 70-77. doi: 10.1016/j.ecolmodel.2015.02.005[Crossref], [Web of Science ®], [Google Scholar]
[7] H.T. Banks, J.E. Banks, J.A. Rosenheim, and K.A. Tillman, Modelling populations of Lygus hesperus on cotton fields in the San Joaquin Valley of California: The importance of statistical and mathematical model choice, CRSC-TR15-04, N.C. State University, Raleigh, NC, 2015. [Google Scholar]
[8] H.T. Banks, M. Doumic, C. Kruse, S. Prigent, and H. Rezaei, Information content in data sets for a nucleated-polymerization model, CRSC-TR14-15, N.C. State University, Raleigh, NC, November; J. Biological Dynamics (2015), 2014. doi:10.1080/17513758.2015.1050465. [Google Scholar] · Zbl 1443.92090
[9] H.T. Banks, J.E. Banks, K. Link, J.A. Rosenheim, C. Ross, and K.A. Tillman, Model comparison tests to determine data information content CRSC-TR14-13, Appl. Math. Lett. 43 (2015), pp. 10-18. doi: 10.1016/j.aml.2014.11.002[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1311.62026
[10] P.E. Blom, S.J. Fleischer, and Z. Smilowitz, Spatial and temporal dynamics of Colorado potato beetle (Coleoptera: Chrysomelidae) in fields with perimeter and spatially targeted insecticides, Environ. Entomol. 31 (2002), pp. 149-159. doi: 10.1603/0046-225X-31.1.149[Crossref], [Web of Science ®], [Google Scholar]
[11] M. Brabec, A. Honěk, S. Pekár, and Z. Martinková, Population dynamics of aphids on cereals: Digging in the time-series data to reveal population regulation caused by temperature, PLoS One 9(9) (2014), p. e106228. doi: 10.1371/journal.pone.0106228[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[12] J.D. Brawn, S.K. Robinson, and F.R. Thompson III, The role of disturbance in the ecology and conservation of birds, Annu. Rev. Ecol. Syst. 32 (2001), pp. 251-276. doi: 10.1146/annurev.ecolsys.32.081501.114031[Crossref], [Google Scholar]
[13] K. Burnham and D. Anderson, Model Selection and Multimodal Inference, 2nd ed., Springer, New York, 2002. [Google Scholar] · Zbl 1005.62007
[14] R.J. Carroll and D. Ruppert, Transformation and Weighting in Regression, Chapman & Hall, New York, 1988. [Crossref], [Google Scholar] · Zbl 0666.62062
[15] G.C. Cutler, Insects, insecticides and hormesis: Evidence and considerations for study, Dose-Response 11(2) (2013), pp. 154-177, PMC, Web, 13 May 2015. doi: 10.2203/dose-response.12-008.Cutler[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[16] M. Davidian and D.M. Giltinan, Nonlinear Models for Repeated Measurement Data, Chapman and Hall, London, 2000. [Google Scholar]
[17] N. Desneux, A. Decourtye, and J.M. Delpuech, The sublethal effects of pesticides on beneficial arthropods, Annu. Rev. Entomol. 52 (2007), pp. 81-106. doi: 10.1146/annurev.ento.52.110405.091440[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[18] I. Dinov, Chi-square (χ) table, Statistics Online Computational Resource, n.d. Web, 30 April 2015. Available at http://www.socr.ucla.edu/Applets.dir/ChiSquareTable.html. [Google Scholar]
[19] C.S. Elton, The Ecology of Invasions by Plants and Animals, Methuen, London, 1958, p. 18. [Crossref], [Google Scholar]
[20] V.E. Forbes and P. Calow, Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ. Toxicol. Chem. 18 (1999), pp. 1544-1556. doi: 10.1002/etc.5620180729[Crossref], [Web of Science ®], [Google Scholar]
[21] V.E. Forbes, P. Calow, and R.M. Sibly, The extrapolation problem and how population modeling can help, Environ. Toxicol. Chem. 27 (2008), pp. 1987-1994. doi: 10.1897/08-029.1[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[22] V.E. Forbes, P. Calow, V. Grimm, T. Hayashi, T. Jager, A. Palmpvist, R. Pastorok, D. Salvito, R. Sibly, J. Spromberg, J. Stark, and R.A. Stillman, Integrating population modeling into ecological risk assessment, Integr. Environ. Assess. Manag. 6 (2010), pp. 191-193. doi: 10.1002/ieam.25[Crossref], [PubMed], [Google Scholar]
[23] T.R. Grasswitz, Field evaluation of organically acceptable foliar insectides for control of green peach aphid, Arthropod Manag. Tests 39(1) (2014), p. B7. doi: 10.4182/amt.2014.B7[Crossref], [Google Scholar]
[24] M.P. Hassell, J.H. Lawton, and R.M. May, Patterns of dynamical behaviour in single-species populations, J. Anim. Ecol. (1976), pp. 471-486. doi: 10.2307/3886[Crossref], [Web of Science ®], [Google Scholar]
[25] R. Hilborn, The Ecological Detective: Confronting Models with Data, Vol. 28, Princeton University Press, Princeton, NJ, 1997. [Google Scholar]
[26] S. Macfadyen, J.E. Banks, J.D. Stark, and A.P. Davies, Using semi-field studies to examine the effects of pesticides on mobile terrestrial invertebrates, Ann. Rev. Entomol. 59 (2014), pp. 383-404. doi: 10.1146/annurev-ento-011613-162109[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[27] B.L. McManus and B.W. Fuller, Soybean aphid management using foliar applied insecticides in South Dakota, Arthropod Manag. Tests 38(1) (2013), p. F65. [Google Scholar]
[28] H. Motulsky and A. Christopoulos, Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting, Oxford University Press, New York, NY, 2004. [Google Scholar] · Zbl 1081.62100
[29] S.T.A. Pickett and P.S. White, Natural disturbance and patch dynamics: An introduction, in The Ecology of Natural Disturbance and Patch Dynamics, S.T.A. Pickett and P.S. White, eds., Academic Press, Orlando, 1985, pp. 3-13. [Google Scholar]
[30] G.L. Reed, A.S. Jensen, J. Riebe, G. Head, and J.J. Duan, Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: Comparative efficacy and non-target impacts, Entomologia Experimentalis et Applicata 100(1) (2001), pp. 89-100. doi: 10.1046/j.1570-7458.2001.00851.x[Crossref], [Web of Science ®], [Google Scholar]
[31] J.A. Rosenheim, K. Steinmann, G.A. Langelloto, and A.G. Zink, Estimating the impact of Lygus hesperus on cotton: The insect, plant and human observer as sources of variability, Environ. Entomol. 35 (2006), pp. 1141-1153. doi: 10.1603/0046-225X(2006)35[1141:ETIOLH]2.0.CO;2[Crossref], [Web of Science ®], [Google Scholar]
[32] G.A.F. Seber and C.J. Wild, Nonlinear Regression, J. Wiley & Sons, Hoboken, NJ, 2003. [Google Scholar] · Zbl 0721.62062
[33] S.F. Smith and V.A. Krischik, Effects of systemic imidacloprid on Coleomegilla maculata (Coleoptera: Coccinellidae), Environ. Entomol. 28 (1999), pp. 1189-1195. doi: 10.1093/ee/28.6.1189[Crossref], [Web of Science ®], [Google Scholar]
[34] J.D. Stark and J.E. Banks, Population-level effects of pesticides and other toxicants on arthropods, Annu. Rev. Entomol. 48 (2003), pp. 505-519. doi: 10.1146/annurev.ento.48.091801.112621[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[35] J.D. Stark, J.E. Banks, and R. Vargas, How risky is risk assessment: The role that life history strategies play in susceptibility of species to stress, Proc. Natl. Acad. Sci. 101 (2004), pp. 732-736. doi: 10.1073/pnas.0304903101[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[36] J.D. Stark, R. Vargas, and J.E. Banks, Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents, J. Econ. Entomol. 100(4) (2007), pp. 1027-1032. doi: 10.1093/jee/100.4.1027[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[37] J.D. Stark, R.I. Vargas, and J.E. Banks, Incorporating variability in point estimates in risk assessment: Bridging the gap between LC50 and population endpoints, Environ. Toxicol. Chem. 34(7) (2015), pp. 1683-1688. doi: 10.1002/etc.2978[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[38] M.R.E. Symonds and A. Moussalli, A brief guide to model selection, mulitimodal interference and model averaging in behavioural ecology using Akaike’s information criterion, Behav. Ecol. Sociobiol. 65(1) (2011), pp. 13-21. doi: 10.1007/s00265-010-1037-6[Crossref], [Web of Science ®], [Google Scholar]
[39] K.M. Theiling and B.A. Croft, Pesticide side effects on arthropod natural enemies: A database summary, Agric. Ecosyst. Environ. 21 (1998), pp. 191-218. doi: 10.1016/0167-8809(88)90088-6[Crossref], [Web of Science ®], [Google Scholar]
[40] E.W. Weisstein, Chi-squared distribution, From MathWorld-A Wolfram Web Resource. Available at http://mathworld.wolfram.com/Chi-SquaredDistribution.html. [Google Scholar]
[41] K. Zhou, J. Huang, X. Deng, W. van der Werf, W. Zhang, Y. Lu, K. Wu, and F. Wu, Effects of land use and insecticides on natural enemies of aphids in cotton: First evidence from smallholder agriculture in the North China Plain, Agric. Ecosyst. Environ. 183 (2014), pp. 176-184. doi: 10.1016/j.agee.2013.11.008[Crossref], [Web of Science ®], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.