×

On the dynamics of one-prey-\(n\)-predator impulsive reaction-diffusion predator-prey system with ratio-dependent functional response. (English) Zbl 1447.92352

Summary: In this paper, a one-prey-\(n\)-predator impulsive reaction-diffusion periodic predator-prey system with ratio-dependent functional response is investigated. On the basis of the upper and lower solution method and comparison theory of differential equation, sufficient conditions on the ultimate boundedness and permanence of the predator-prey system are established. By constructing an appropriate auxiliary function, the conditions for the existence of a unique globally stable positive periodic solution are also obtained. Examples and numerical simulations are presented to verify the feasibility of our results. A discussion is conducted at the end.

MSC:

92D25 Population dynamics (general)
35K57 Reaction-diffusion equations
35B10 Periodic solutions to PDEs
35R12 Impulsive partial differential equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] B. Ainsebaa and S. Aniţa, Internal stabilizability for a reaction-diffusion problem modeling a predator-prey system, Nonlinear Anal. 61 (2005), pp. 491-501. doi: 10.1016/j.na.2004.09.055[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1072.35090
[2] M.U. Akhmet, M. Beklioglu, T. Ergenc, and V.I. Tkachenko, An impulsive ratio-dependent predator-prey system with diffusion, Nonlinear Anal. RWA 7 (2006), pp. 1255-1267. doi: 10.1016/j.nonrwa.2005.11.007[Crossref], [Google Scholar] · Zbl 1114.35097
[3] Z. Du and Z. Feng, Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays, J. Comput. Appl. Math. 258 (2014), pp. 87-98. doi: 10.1016/j.cam.2013.09.008[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1330.37074
[4] C. Duque, K. Kiss, and M. Lizana, On the dynamics of an n-dimensional ratio-dependent predator-prey system with diffusion, Appl. Math. Comput. 208 (2009), pp. 98-105. [Web of Science ®], [Google Scholar] · Zbl 1155.92037
[5] R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), pp. 353-369. [Crossref], [Google Scholar] · JFM 63.1111.04
[6] Z. Ge and Y. He, Diffusion effect and stability analysis of a predator-prey system described by a delayed reaction-diffusion equations, J. Math. Anal. Appl. 339 (2008), pp. 1432-1450. doi: 10.1016/j.jmaa.2007.07.060[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1132.35087
[7] A. Kolmogoroff, I. Petrovsky, and N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem, Moscow Univ. Bull. Math. 1 (1937), pp. 1-25. [Google Scholar]
[8] V. Lakshmikantham, D. Bainov, and P. Simenov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. [Crossref], [Google Scholar] · Zbl 0719.34002
[9] X. Liu and L. Chen, Global dynamics of the periodic logistic system with periodic impulsive perturbations, J. Math. Anal. Appl. 289 (2004), pp. 279-291. doi: 10.1016/j.jmaa.2003.09.058[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1054.34015
[10] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992. [Google Scholar] · Zbl 0777.35001
[11] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. [Crossref], [Google Scholar] · Zbl 0837.34003
[12] H.B. Shi and Y. Li, Global asymptotic stability of a diffusive predator-prey model with ratio-dependent functional response, Appl. Math. Comput. 250 (2015), pp. 71-77. [Web of Science ®], [Google Scholar] · Zbl 1328.35253
[13] J. Shi and R. Shivaji, Persistence in reaction-diffusion models with weak allee effect, J. Math. Biol. 52 (2006), pp. 807-829. doi: 10.1007/s00285-006-0373-7[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1110.92055
[14] J.G. Skellam, Random dispersal in theoretical populations, Biometrika 38 (1951), pp. 196-218. doi: 10.1093/biomet/38.1-2.196[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0043.14401
[15] L.H. Smith, Dynamics of Competition, Lecture Notes in Mathematics, Vol. 1714, Springer, Berlin, 1999, pp. 192-240. [Google Scholar] · Zbl 1002.92564
[16] W. Walter, Differential inequalities and maximum principles; theory, new methods and applications, Nonlinear Anal. Appl. 30 (1997), pp. 4695-4711. doi: 10.1016/S0362-546X(96)00259-3[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0893.35014
[17] C. Wang, Rich dynamics of a predator-prey model with spatial motion, Appl. Math. Comput. 260 (2015), pp. 1-9. [Web of Science ®], [Google Scholar] · Zbl 1410.35254
[18] Q. Wang, Z. Wang, Y. Wang, H. Zhang, and M. Ding, An impulsive ratio-dependent n+1-species predator-prey model with diffusion, Nonlinear Anal. RWA 11 (2010), pp. 2164-2174. doi: 10.1016/j.nonrwa.2009.11.013[Crossref], [Google Scholar] · Zbl 1189.35362
[19] R. Wu, X. Zou, and K. Wang, Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations, Commun. Nonlinear Sci. Numer. Simul. 20 (2015), pp. 965-974. doi: 10.1016/j.cnsns.2014.06.023[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1304.92117
[20] R. Xu, A reaction-diffusion predator-prey model with stage structure and nonlocal delay, Appl. Math. Comput. 175 (2006), pp. 984-1006. [Web of Science ®], [Google Scholar] · Zbl 1099.92081
[21] R. Xu and Z. Ma, Global stability of a reaction-diffusion predator-prey model with a nonlocal delay, Math. Comput. Model. 50 (2009), pp. 194-206. doi: 10.1016/j.mcm.2009.02.011[Crossref], [Google Scholar] · Zbl 1185.35130
[22] Y. Yu, W. Deng, and Y. Wu, Positivity and boundedness preserving schemes for space-time fractional predator-prey reaction-diffusion model, Comput. Math. Appl. 69 (2015), pp. 743-759. doi: 10.1016/j.camwa.2015.02.024[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1443.65151
[23] Z. Zhao and X. Wu, Nonlinear analysis of a delayed stage-structured predator-prey model with impulsive effect and environment pollution, Appl. Math. Comput. 232 (2014), pp. 1262-1268. [Web of Science ®], [Google Scholar] · Zbl 1410.37090
[24] H. Zhang, L. Chen, and J.J. Nieto, A delayed epidemic model with stage-structure and pulses for management strategy, Nonlinear Anal. RWA 9 (2008), pp. 1714-1726. doi: 10.1016/j.nonrwa.2007.05.004[Crossref], [Google Scholar] · Zbl 1154.34394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.