×

Knotoids and protein structure. (English) Zbl 1447.92302

Flapan, Erica (ed.) et al., Topology and geometry of biopolymers. AMS special session on topology of biopolymers, Northeastern University, Boston, MA, USA, April 21–22, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 746, 185-199 (2020).
Summary: Many proteins form open knots. To study and classify proteins in terms of their topology, the protein chain needs to be artificially closed in order to analyze it as a knot. The theory of knotoids provides a workaround to this approach that gives a more refined overview of the topology of knotted proteins. In this review we explain how to analyze open protein chains using the theory of knotoids.
For the entire collection see [Zbl 1435.57001].

MSC:

92D20 Protein sequences, DNA sequences
57K10 Knot theory
57Z10 Relations of manifolds and cell complexes with biology
92-02 Research exposition (monographs, survey articles) pertaining to biology
Full Text: DOI

References:

[1] A. L. Mallam and S. E. Jackson, Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins. Nat. Chem. Biol. 8 no 2 (2012), 147-53. doi: 10.1038/nchembio.742.
[2] P. Dabrowski-Tumanski, A. I. Jarmolinska, and J. I. Sulkowska JI. Prediction of the optimal set of contacts to fold the smallest knotted protein. Journal of Physics-Condensed Matter. 27 no 35 (2015). doi: 10.1088/0953-8984/27/35/354109.
[3] J. I. Sulkowska, J. K. Noel, and J. N. Onuchic, Energy landscape of knotted protein folding. Proc. Natl. Acad. Sci. U.S.A. 109 no 44 (2012), 17783-8. doi: 10.1073/pnas.1201804109.
[4] P. Virnau, L. A. Mirny, and M. Kardar, Intricate knots in proteins: Function and evolution. PLoS Comput. Biol. 2 (2006), 1074-1079.
[5] M. K. Sriramoju, Y. Chen, Y-T. C. Lee, and S-T. D. Hsu, Topologically knotted deubiquitinases exhibit unprecedented mechanostability to withstand the proteolysis by an AAA+ protease Sci. Rep. 8 no 1 (2018), 7076.
[6] J. I. Sulkowska, P.Sulkowski, P. Szymczak, and M. Cieplak Stabilizing effect of knots on proteins Proc. Natl. Acad. Sci. U.S.A. 105 no 50 (2008) ,19714-19719. https://doi.org/10.1073/pnas.0805468105
[7] P. Dabrowski-Tumanski, A. Stasiak, and J.I. Sulkowska, In Search of Functional Advantages of Knots in Proteins. PLoS ONE 11 (2016), e0165986, doi:10.1371/journal.pone.0165986.
[8] J. I. Sulkowska, Joanna, E. J. Rawdon, K. C. Millett, J. N. Onuchic, Jose N and A. Stasiak, Conservation of complex knotting and slipknotting patterns in proteins. Proc. Natl. Acad. Sci. U.S.A. 109 no 26 (2012), E1715-E1723.
[9] Turaev, Vladimir, Knotoids, Osaka J. Math., 49, 1, 195-223 (2012) · Zbl 1271.57030
[10] G\"{u}g\"{u}mc\"{u}, Neslihan; Kauffman, Louis H., New invariants of knotoids, European J. Combin., 65, 186-229 (2017) · Zbl 1373.57012 · doi:10.1016/j.ejc.2017.06.004
[11] D. Goundaroulis, J. Dorier, F. Benedetti, and A. Stasiak, Studies of global and local entanglements of individual protein chains using the concept of knotoids. Sci. Rep. 7 no 1 (2017), 6309.
[12] D. Goundaroulis, N. Gugumcu, S. Lambropoulou, J. Dorier, A. Stasiak, and L. Kauffman, Topological Models for Open-Knotted Protein Chains Using the Concepts of Knotoids and Bonded Knotoids. Polymers 9 no 9 (2017), 444.
[13] J. Dorier, D. Goundaroulis, F. Benedetti, and A. Stasiak, Knoto-ID: a tool to study the entanglement of open protein chains using the concept of knotoids. Bioinformatics, 34 no 19 (2018), 3402-3404, DOI https://doi.org/10.1093/bioinformatics/bty365.
[14] G\"{u}g\"{u}mc\"{u}, Neslihan; Nelson, Sam, Biquandle coloring invariants of knotoids, J. Knot Theory Ramifications, 28, 4, 1950029, 18 pp. (2019) · Zbl 1428.57004 · doi:10.1142/S0218216519500299
[15] A. Barbensi, D. Buck, H. A. Harrington, and M. Lackenby, Double branched covers of knotoids. arxiv:1811.09121 (2018).
[16] Dye, H. A.; Kauffman, Louis H., Virtual crossing number and the arrow polynomial, J. Knot Theory Ramifications, 18, 10, 1335-1357 (2009) · Zbl 1195.57028 · doi:10.1142/S0218216509007166
[17] D. Goundaroulis, J. Dorier, and A. Stasiak, A systematic classification of knotoids on the plane and on the sphere arXiv:1902.07277 (2019). · Zbl 1447.92302
[18] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell. Garland Science, New York, 2008.
[19] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, The protein data bank. Nucleic Acids Res. 28 no 1 (2000), 235-242.
[20] K. Alexander, A. J. Taylor, and M. R. Dennis Proteins analysed as virtual knots Sci. Rep. 7 no 1 (2017) 42300.
[21] N. P. King, E. O. Yeates, and T. O. Yeates, Identification of rare slipknots in proteins and their implications for stability and folding. J. Mol. Biol 373 no 1 (2007), 153-166.
[22] Millett, Kenneth C., Knots, slipknots, and ephemeral knots in random walks and equilateral polygons, J. Knot Theory Ramifications, 19, 5, 601-615 (2010) · Zbl 1191.57009 · doi:10.1142/S0218216510008078
[23] K. Koniaris, M. Muthukumar, Self-entanglement in ring polymers. J. Chem. Phys. 95 no. 4 (1991), 2873-2881.
[24] D. Shi, X. Yu, L. Roth, H. Morizono, M. Tuchman, and N. M. Allewell, Structures of N-acetylornithine transcarbamoylase from Xanthomonas campestris complexed with substrates and substrate analogs imply mechanisms for substrate binding and catalysism. Proteins Struct. Funct. Bioinform. 64 (2006), 532-542.
[25] W. Niemyska, P. Dabrowski-Tumanski, M. Kadlof, E. Haglund, P. Sulkowski, and J. I. Sulkowska, Complex lasso: new entangled motifs in proteins. Sci. Rep. 6 (2016), 36895.
[26] P. Dabrowski-Tumanski, P. Rubach, D. Goundaroulis, J. Dorier, K. C. Millett, E. J. Rawdon, P. Sulkowski, A. Stasiak, and J. I. Sulkowska, KnotProt 2.0: a database of proteins with knots and other entangled structures. Nucleic Acids Res. 47 D1, (2018) D367-D375. https://doi.org/10.1093/nar/gky1140.
[27] P. Dabrowski-Tumanski, P. Rubach, D. Goundaroulis, J. Dorier, K. C. Millett, E. J. Rawdon, P. Sulkowski, A. Stasiak, and J. I. Sulkowska, KnotProt 2.0: a database of proteins with knots and other entangled structures. Nucleic Acids Res. 47 D1, (2018) D367-D375. https://doi.org/10.1093/nar/gky1140.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.