×

Mathematical model to assess vaccination and effective contact rate impact in the spread of tuberculosis. (English) Zbl 1447.92224

Summary: The long and binding treatment of tuberculosis (TB) at least 6–8 months for the new cases, the partial immunity given by BCG vaccine, the loss of immunity after a few years doing that strategy of TB control via vaccination and treatment of infectious are not sufficient to eradicate TB. TB is an infectious disease caused by the bacillus Mycobacterium tuberculosis. Adults are principally attacked. In this work, we assess the impact of vaccination in the spread of TB via a deterministic epidemic model (SVELI) (susceptible, vaccinated, early latent, late latent, infectious). Using the Lyapunov-Lasalle method, we analyse the stability of epidemic system (SVELI) around the equilibriums (disease-free and endemic). The global asymptotic stability of the unique endemic equilibrium whenever \(R_0>1\) is proved, where \(R_0\) is the reproduction number. We prove also that when \(R_0\) is less than 1, TB can be eradicated. Numerical simulations, using some TB data found in the literature in relation with Cameroon, are conducted to approve analytic results, and to show that vaccination coverage is not sufficient to control TB, effective contact rate has a high impact in the spread of TB.

MSC:

92C60 Medical epidemiology
34D23 Global stability of solutions to ordinary differential equations

References:

[1] E. Beretta and Y. Takeuchi, Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delay, SIAM J. Appl. Math. 48(3) (1988), pp. 627-651. doi: 10.1137/0148035[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0661.92018
[2] T. Berge, S. Bowong, J. Lubuma, and M.L.M. Manyombe, Modeling Ebola virus disease transmissions with reservoir in a complex virus life ecology, Math. Biosci. Eng. 15(1) (2018), pp. 21-56. doi: 10.3934/mbe.2018002[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1378.34071
[3] S.M. Blower, A.R. McLean, T.C. Porco, P.M. Small, P.C. Hopwell, M.A. Sanchez, and A.R. Ross, The intrinsic transmission dynamics of tuberculosis epidemics, nature medicine, Histoire de l’Acad. Roy. Sci. (Paris) avec Mém. des Math. et Phys. and Mé. [Google Scholar]
[4] T.F. Brewer, S.J. Heymann, A.A. Colditz, M.E. Wilson, K. Auerbach, D. Kane, and H.V. Fineberg, Evaluation of tuberculosis control policies using computer simulation, JAMA 276(23) (1996), pp. 1898-1903. doi: 10.1001/jama.1996.03540230048034[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[5] Centers for Disease Control and Prevention (CDC) and others, The Pink Book: Epidemiology and Prevention of Vaccine Preventable Diseases, 10th ed. [Google Scholar]
[6] G.A. Colditz, T.F. Brewer, C.S. Berkey, M.E. Wilson, E. Burdick, H.V. Fineberg, and F. Mosteller, Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature, JAMA 271(9) (1994), pp. 698-702. doi: 10.1001/jama.1994.03510330076038[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[7] O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Vol. 5, John Wiley & Sons, west sussex, 2000. [Google Scholar] · Zbl 0997.92505
[8] R. Diel, D. Goletti, G. Ferrara, G. Bothamley, D. Cirillo, B. Kampmann, C. Lange, M. Losi, R. Markova, G.B. Migliori, A. Nienhaus, M. Ruhwald, D. Wagner, J.P. Zellweger, E. Huitric, A. Sandgren, and D. Manissero, Interferon-gamma release assays for the diagnosis of latent mycobacterium tuberculosis infection: A systematic review and meta-analysis, Eur. Respir. J. 37 (2011), pp. 88-99. doi: 10.1183/09031936.00115110[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[9] H. Guo and M.Y. Li, Global stability in a mathematical model of tuberculosis, Canad. Appl. Math. Quart. 14 (2006), pp. 185-197. [Google Scholar] · Zbl 1135.92314
[10] J.M. Hyman and J. Li, Differential susceptibility epidemic models, J. Math. Biol. 50(6) (2005), pp. 626-644. doi: 10.1007/s00285-004-0301-7[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1066.92044
[11] M.L.M. Manyombe, J. Mbang, J. Lubuma, and B. Tsanou, Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers, Math. Biosci. Eng. 13(4) (2016), pp. 813-840. doi: 10.3934/mbe.2016019[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1352.34075
[12] S. Marino, I.B. Hogue, C.J. Ray, and D.E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol. 254 (2008), pp. 178-196. doi: 10.1016/j.jtbi.2008.04.011[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1400.92013
[13] D.P. Moualeu, S. Bowong, J. Kurths, Parameter estimation of a tuberculosismodel in a patch environment: Case of Cameroon, Proc. Int. Sym. Math. Comput. Biol. 5 (2013), pp. 352-373. [Google Scholar]
[14] J.P. Narain, M.C. Raviglione, and A. Kochi, HIV-associated tuberculosis in developing countries: Epidemiology and strategies for prevention, Tuber. Lung Dis. 73(6) (1992), pp. 311-321. doi: 10.1016/0962-8479(92)90033-G[Crossref], [PubMed], [Google Scholar]
[15] National Institute of Statistics, Evolution des systèmes statistiques nationaux - Cameron, 2007. [Google Scholar]
[16] National Institute of Statistics, Rapport sur la présentation des résultats définitifs. Technical report, Bureau Central des Recensements et des Etudes de Population, 2010. [Google Scholar]
[17] A.J. Rubel and L.C. Garro, Social and cultural factors in the successful control of tuberculosis, Public Health Rep. 107(6) (1992), p. 626. [PubMed], [Web of Science ®], [Google Scholar]
[18] R.W. West and J.R. Thompson, Modeling the impact of HIV on the spread of tuberculosis in the united states, Math. Biosci. 143(1) (1997), pp. 35-60. doi: 10.1016/S0025-5564(97)00001-1[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0905.92028
[19] World Health Organization, Media centre: Poliomyelitis, fact sheet, Updated April 2016. Available at http://www.who.int/mediacentre/factsheets/fs114/en/#. [Google Scholar]
[20] World Health Organization et al., Global Tuberculosis Report, 2016. [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.