×

The origin of allometric scaling laws in biology. (English) Zbl 1447.92015

Summary: The empirical rules relating metabolic rate and body size are described in terms of (i) a scaling exponent, which refers to the ratio of the fractional change in metabolic rate to a change in body size, (ii) a proportionality constant, which describes the rate of energy expenditure in an organism of unit mass. This article integrates the chemiosmotic theory of energy transduction with the methods of quantum statistics to propose a molecular mechanism which, in sharp contrast to competing models, explains both the variation in scaling exponents and the taxon-specific differences in proportionality constants. The new model is universal in the sense that it applies to unicellular organisms, plants and animals.

MSC:

92C05 Biophysics
Full Text: DOI

References:

[1] Agutter, P. S.; Wheatley, D. N., Metabolic scaling: consensus or controversy?, Theoret. Biol. Med. Modelling, 1, 13 (2004)
[2] Alexander, R. M., Energy for Animal Life (1992), Oxford University Press: Oxford University Press Oxford
[3] Arnold, L.; Demetrius, L.; Gundlach, M., Evolutionary formalism and products of random matrices, Ann. Appl. Probab., 4, 859-901 (1994) · Zbl 0818.15015
[4] Banavar, J. R.; Damuth, J.; Martan, A.; Rinaldo, A., Supply-demand balance and metabolic scaling, Proc. Natl Acad. Sci. USA., 99, 10506-10509 (2002) · Zbl 0993.92001
[5] Brand, M. D.; Chien, L.-F.; Diolez, P., Experimental discrimination between proton leak and redox slip during mitochondrial electron transport, Biochem. J., 297, 27-29 (1994)
[6] Brand, M. D.; Conture, P.; Else, P. L.; Withers, K. W.; Hulbert, A. J., Evolution of energy metabolism, Biochem. J., 275, 81-86 (1991)
[7] Brody, S., Bioenergetics and Growth (1945), Reinhold: Reinhold New York
[8] Brookes, P. S.; Buckingham, J. A.; Jenreiro, A. M.; Hulbert, A. J.; Brand, M. D., The proton permeability of the inner membrane of liver mitochondria from ectothermic and endothermic vertebrates and from obese rats: correlations with standard metabolic rates and phospholipid fatty acid composition, Comp. Biochem. Biophys., 119B, 325-344 (1998)
[9] Brown, J. H.; Gillooly, J. F.; Allen, A. P.; Savage, V. M.; West, G. B., Towards a metabolic theory of ecology, Ecology, 85, 1771-1789 (2004)
[10] Clarke, A.; Fraser, K. P.P., Why does metabolism scale with temperature?, Funct. Ecol., 18, 243-251 (2004)
[11] Cyr, H.; Walker, S. C., An illusion of mechanistic understanding, Ecology, 85, 7, 1802-1804 (2004)
[12] Demetrius, L., Statistical mechanics and population biology, J. Stat. Phys., 30, 709 (1983) · Zbl 0588.60097
[13] Demetrius, L., Directionality principles in thermodynamics and evolution, Proc. Natl Acad. Sci., 94, 3401-3408 (1997)
[14] Demetrius, L., Quantum statistics and allometric scaling of organisms, Physica A, 322, 477-490 (2003) · Zbl 1022.92001
[15] Devault, D., Quantum mechanical tunnelling in biological systems, Q. Rev. Biol. 4., 13, 387-564 (1980)
[16] Dodds, P. S.; Rothmann, D. H.; Weitz, J. S., Re-examination of the “3/4-law” of metabolism, J. Theor. Biol., 209, 9-27 (2001)
[17] Dufour, S.; Rousse, N.; Canioni, P.; Diolez, P., Top-down control analysis of temperature effect on oxidative phosphorylation, Biochem. J., 314, 443-751 (1996)
[18] Fox, R. F., Biological Energy Transduction (1982), Wiley: Wiley New York
[19] Fröhlich, H., Long-range coherence and energy storage in biological systems, Int. J. Quantum Chem., II, 641-649 (1968)
[20] Garlid, K.; Beavis, A.; Ratkje, S. K., On the nature of ion leaks in energy transducing membranes, Biochim. Biophys. Acta, 976, 109-120 (1989)
[21] Gillooly, J. H.; Brown, J. H.; West, G. B.; Savage, V. M.; Charnov, E. L., Effects of size and temperature on metabolic rate, Science, 293, 2248-2251 (2001)
[22] Glazier, D. S., Beyond the 3/4-power law: variation in the intra- and interspecific scaling of metabolic rate in animals, Biol. Rev., 80, 611-662 (2005)
[23] Harold, F. M., The Vital Force. A Study of Bioenergetics (1986), Freeman: Freeman New York
[24] Harris, D. A., Bioenergetics at a Glance (1995), Blackwell Scientific Publications: Blackwell Scientific Publications Oxford
[25] Hemmingsen, A. M., Energy metabolism as related to body size and respiratory surfaces and its evolution, Rep. Steno Mem. Hosp. Copenhagen, 9, 1-110 (1960)
[26] Hochachka, P. W.; Somero, G. W., Biochemical Adaptation (2000), Oxford University Press: Oxford University Press Oxford
[27] Hulbert, A. J., On the importance of fatty acid composition of membranes for aging, J. Theor. Biol., 234, 277-288 (2005) · Zbl 1445.92092
[28] Hulbert, A. J.; Else, P., Mechanisms underlying the cost of living in animals, Ann. Rev. Phys., 62, 207-235 (2000)
[29] Kleiber, M., The Fire of Life. An Introduction to Animal Energetics (1961), Wiley: Wiley New York
[30] Krebs, H. A., Body size and respiration, Biochim. Biophys. Acta, 4, 249-269 (1950)
[31] Longair, M. S., Theoretical Concepts in Physics (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0607.70001
[32] Makarieva, A. M.; Gorshkov, V. G.; Bai-Lian Li, Biochemical universality of living matter and its metabolic implications, Functional Ecol., 19, 547-551 (2005)
[33] McMahon, T. A., Size and shape in biology, Science, 179, 1201-1204 (1973)
[34] Mandl, F., Statistical Physics (1988), Wiley: Wiley New York
[35] Mitchell, P., Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. Cambridge Philos. Soc., 41, 445-502 (1966)
[36] Nicholls, D. G., The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution, Eur. J. Biochem., 50, 305-315 (1974)
[37] Nicholls, D. G.; Ferguson, S. J., Bioenergetics 3 (2002), Academic Press: Academic Press London
[38] Page, C. C.; Moser, C. C.; Chen, X.; Dutton, P. L., Natural engineering principles of electron tunnelling in biological oxidation-reduction, Nature, 402, 47-52 (1999)
[39] Peters, R. H., The ecological implication of body size (1983), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0507.28010
[40] Porter, R. K.; Brand, M. D., Body mass dependence of H^+-leak in mitochondria and its relevance to metabolic rate, Nature, 362, 628-630 (1993)
[41] Reich, P. B.; Tjoelker, M. G.; Machado, T.-L.; Oleksyn, J., Universal scaling of respiratory metabolism, size and nitrogen in plants, Nature, 439, 457-461 (2005)
[42] Singer, S.; Nicholson, G. L., The fluid mosaic model of cell membranes, Science, 172, 720-730 (1972)
[43] Suarez, R. K.; Darveau, C. A., Multi-level regulation and metabolic scaling, J. Exp. Biol., 208, 1627-1634 (2005)
[44] Tilman, D., Does metabolic theory apply to community ecology? Its a matter of scale, Ecology, 88, 7, 1797-1799 (2004)
[45] Tuszynski, J. A.; Kurzynski, M., Introduction to Molecular Biophysics (2003), CRC Press: CRC Press Baco Raton
[46] Weibel, E.; Bacigalupe, L. D.; Schmitt, B.; Hoppeler, H., Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor, Respir. Physiol. Neurobiol., 140, 115-132 (2004)
[47] West, G. B.; Brown, T. H.; Enquist, B. J., A general model for the origin of allometric scaling laws in biology, Science, 276, 122-126 (1997)
[48] White, C. R.; Seymour, R. S., Mammalian basal metabolic rate is proportional to body \(\operatorname{mass}^{2 / 3} \), Proc. Natl Acad. Sci. USA, 1005, 4046-4049 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.