×

Large exponent behavior for power-type nonlinear evolution equations and applications. (English) Zbl 1447.35207

Summary: Motivated by math models of image denoising and collapsing sandpiles, we are concerned with asymptotic behavior for a class of fully nonlinear power-type evolution equations in one space dimension as the exponent tends to infinity. It turns out that an initial layer appears in the large exponent limit. In order to examine the initial layer, we rescale the solution by stretching the time variable and study a fully nonlinear equation with a discontinuous and unbounded parabolic operator. We establish uniqueness and existence of viscosity solutions to this limit equation.

MSC:

35K93 Quasilinear parabolic equations with mean curvature operator
35D40 Viscosity solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Alvarez, L.; Guichard, F.; Lions, P-L; Morel, J-M, Axioms and fundamental equations of image processing, Arch. Rational Mech. Anal., 123, 3, 199-257 (1993) · Zbl 0788.68153 · doi:10.1007/BF00375127
[2] Alvarez, L.; Lions, P-L; Morel, J-M, Image selective smoothing and edge detection by nonlinear diffusion, II. SIAM J. Numer. Anal., 29, 3, 845-866 (1992) · Zbl 0766.65117 · doi:10.1137/0729052
[3] Andrews, B., Evolving convex curves, Calc. Var. Partial Differential Equations, 7, 4, 315-371 (1998) · Zbl 0931.53030 · doi:10.1007/s005260050111
[4] Andrews, B., Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16, 2, 443-459 (2003) · Zbl 1023.53051 · doi:10.1090/S0894-0347-02-00415-0
[5] Aronsson, G.; Evans, LC; Wu, Y., Fast/slow diffusion and growing sandpiles, J. Differential Equations, 131, 2, 304-335 (1996) · Zbl 0864.35057 · doi:10.1006/jdeq.1996.0166
[6] Barles, G.; Biton, S.; Bourgoing, M.; Ley, O., Uniqueness results for quasilinear parabolic equations through viscosity solutions’ methods, Calc. Var. Partial Differential Equations, 18, 2, 159-179 (2003) · Zbl 1036.35001 · doi:10.1007/s00526-002-0186-5
[7] Barles, G.; Perthame, B., Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér., 21, 4, 557-579 (1987) · Zbl 0629.49017 · doi:10.1051/m2an/1987210405571
[8] Barles, G.; Perthame, B., Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim., 26, 5, 1133-1148 (1988) · Zbl 0674.49027 · doi:10.1137/0326063
[9] P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and optimal control, volume 58 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 2004. · Zbl 1095.49003
[10] F. Cao. Geometric curve evolution and image processing, volume 1805 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2003. · Zbl 1290.35001
[11] Chen, RM; Liu, Q., A nonlinear parabolic equation with discontinuity in the highest order and applications, J. Differential Equations, 260, 2, 1200-1227 (2016) · Zbl 1439.35235 · doi:10.1016/j.jde.2015.09.022
[12] Chen, YG; Giga, Y.; Goto, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33, 3, 749-786 (1991) · Zbl 0696.35087 · doi:10.4310/jdg/1214446564
[13] Crandall, M. G.; Ishii, H.; Lions, P.-L, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, 1, 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[14] Evans, LC; Feldman, M.; Gariepy, RF, Fast/slow diffusion and collapsing sandpiles, J. Differential Equations, 137, 1, 166-209 (1997) · Zbl 0879.35019 · doi:10.1006/jdeq.1997.3243
[15] Evans, LC; Spruck, J., Motion of level sets by mean curvature, I. J. Differential Geom., 33, 3, 635-681 (1991) · Zbl 0726.53029 · doi:10.4310/jdg/1214446559
[16] Giga, Y., Viscosity solutions with shocks, Comm. Pure Appl. Math., 55, 4, 431-480 (2002) · Zbl 1028.35044 · doi:10.1002/cpa.3015
[17] Y. Giga. Surface evolution equations, volume 99 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 2006. A level set approach. · Zbl 1096.53039
[18] Goto, S., Generalized motion of hypersurfaces whose growth speed depends superlinearly on the curvature tensor, Differential Integral Equations, 7, 2, 323-343 (1994) · Zbl 0808.35007
[19] Ishii, H., Perron’s method for Hamilton-Jacobi equations, Duke Math. J., 55, 2, 369-384 (1987) · Zbl 0697.35030 · doi:10.1215/S0012-7094-87-05521-9
[20] Ishii, H.; Souganidis, P., Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. (2), 47, 2, 227-250 (1995) · Zbl 0837.35066 · doi:10.2748/tmj/1178225593
[21] Jensen, R.; Souganidis, PE, A regularity result for viscosity solutions of Hamilton-Jacobi equations in one space dimension, Trans. Amer. Math. Soc., 301, 1, 137-147 (1987) · Zbl 0657.35083
[22] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968. · Zbl 0174.15403
[23] Q. Liu. The vanishing exponent limit for motion by a power of mean curvature. preprint. · Zbl 1442.35200
[24] Liu, Q.; Yamada, N., An obstacle problem arising in large exponent limit of power mean curvature flow equation, Trans. Amer. Math. Soc., 372, 3, 2103-2141 (2019) · Zbl 1447.35208 · doi:10.1090/tran/7717
[25] Malladi, R.; Sethian, JA, Image processing via level set curvature flow, Proc. Nat. Acad. Sci. U.S.A., 92, 15, 7046-7050 (1995) · Zbl 1023.68689 · doi:10.1073/pnas.92.15.7046
[26] Schulze, F., Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z., 251, 4, 721-733 (2005) · Zbl 1087.53062 · doi:10.1007/s00209-004-0721-5
[27] Schulze, F., Convexity estimates for flows by powers of the mean curvature, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5, 2, 261-277 (2006) · Zbl 1150.53024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.