×

Structure of eigenvectors of random regular digraphs. (English) Zbl 1447.05091

Summary: Let \( d\) and \( n\) be integers satisfying \( C\leq d\leq \exp (c\sqrt {\ln n})\) for some universal constants \( c, C>0\), and let \( z\in \mathbb{C}\). Denote by \( M\) the adjacency matrix of a random \( d\)-regular directed graph on \( n\) vertices. In this paper, we study the structure of the kernel of submatrices of \( M-z,\mathrm{Id}\), formed by removing a subset of rows. We show that with large probability the kernel consists of two nonintersecting types of vectors, which we call very steep and gradual with many levels. As a corollary, we show, in particular, that every eigenvector of \( M\), except for constant multiples of \( (1,1,\dots ,1)\), possesses a weak delocalization property: its level sets have cardinality less than \( Cn\ln ^2 d/\ln n\). For a large constant \( d\), this provides principally new structural information on eigenvectors, implying that the number of their level sets grows to infinity with \( n\). As a key technical ingredient of our proofs, we introduce a decomposition of \( \mathbb{C}^n\) into vectors of different degrees of “structuredness”, which is an alternative to the decomposition based on the least common denominator in the regime when the underlying random matrix is very sparse.

MSC:

05C20 Directed graphs (digraphs), tournaments
05C80 Random graphs (graph-theoretic aspects)
60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
46B06 Asymptotic theory of Banach spaces
46B09 Probabilistic methods in Banach space theory
60C05 Combinatorial probability

References:

[1] Alon, N.; Milman, V. D., \( \lambda_1,\) isoperimetric inequalities for graphs, and superconcentrators, J. Combin. Theory Ser. B, 38, 1, 73-88 (1985) · Zbl 0549.05051 · doi:10.1016/0095-8956(85)90092-9
[2] Anantharaman, Nalini; Le Masson, Etienne, Quantum ergodicity on large regular graphs, Duke Math. J., 164, 4, 723-765 (2015) · Zbl 1386.58015 · doi:10.1215/00127094-2881592
[3] AM2 \'A. BackhauszandB. Szegedy, On the almost eigenvectors of random regular graphs, arXiv:1607.04785 (2016).
[4] Bai, Zhidong; Silverstein, Jack W., Spectral analysis of large dimensional random matrices, Springer Series in Statistics, xvi+551 pp. (2010), Springer, New York · Zbl 1301.60002 · doi:10.1007/978-1-4419-0661-8
[5] Basak, Anirban; Cook, Nicholas; Zeitouni, Ofer, Circular law for the sum of random permutation matrices, Electron. J. Probab., 23, Paper No. 33, 51 pp. (2018) · Zbl 1386.15066 · doi:10.1214/18-EJP162
[6] Basak, Anirban; Rudelson, Mark, Invertibility of sparse non-Hermitian matrices, Adv. Math., 310, 426-483 (2017) · Zbl 1406.60013 · doi:10.1016/j.aim.2017.02.009
[7] BasRudcirc A. BasakandM. Rudelson, The circular law for sparse non-Hermitian matrices, arXiv:1707.03675 (2017).
[8] BHY R. Bauerschmidt,J. Huang,andH.-T. Yau, Local Kesten-McKay law for random regular graphs, arXiv:1609.09052 (2016).
[9] Bauerschmidt, Roland; Knowles, Antti; Yau, Horng-Tzer, Local semicircle law for random regular graphs, Comm. Pure Appl. Math., 70, 10, 1898-1960 (2017) · Zbl 1372.05194 · doi:10.1002/cpa.21709
[10] Bordenave C. Bordenave, A new proof of Friedman’s second eigenvalue theorem and its extension to random lifts, arXiv:1502.04482 (2015). · Zbl 1327.60067
[11] Bordenave, Charles; Chafa\"{i}, Djalil, Around the circular law, Probab. Surv., 9, 1-89 (2012) · Zbl 1243.15022 · doi:10.1214/11-PS183
[12] Bourgade, Paul; Huang, Jiaoyang; Yau, Horng-Tzer, Eigenvector statistics of sparse random matrices, Electron. J. Probab., 22, Paper No. 64, 38 pp. (2017) · Zbl 1372.05195 · doi:10.1214/17-EJP81
[13] Broder, Andrei Z.; Frieze, Alan M.; Suen, Stephen; Upfal, Eli, Optimal construction of edge-disjoint paths in random graphs, SIAM J. Comput., 28, 2, 541-573 (1999) · Zbl 0912.05058 · doi:10.1137/S0097539795290805
[14] Cook, Nicholas A., Discrepancy properties for random regular digraphs, Random Structures Algorithms, 50, 1, 23-58 (2017) · Zbl 1352.05164 · doi:10.1002/rsa.20643
[15] Cook, Nicholas A., On the singularity of adjacency matrices for random regular digraphs, Probab. Theory Related Fields, 167, 1-2, 143-200 (2017) · Zbl 1365.05260 · doi:10.1007/s00440-015-0679-8
[16] Cookcircular N. Cook, The circular law for random regular digraphs, arXiv:1703.05839 (2017). Ann. Inst. Henri Poincar\'e Probab. Stat. (to appear).
[17] Cook, Nicholas; Goldstein, Larry; Johnson, Tobias, Size biased couplings and the spectral gap for random regular graphs, Ann. Probab., 46, 1, 72-125 (2018) · Zbl 1386.05105 · doi:10.1214/17-AOP1180
[18] Geisinger, Leander, Convergence of the density of states and delocalization of eigenvectors on random regular graphs, J. Spectr. Theory, 5, 4, 783-827 (2015) · Zbl 1384.60024 · doi:10.4171/JST/114
[19] Dodziuk, Jozef, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc., 284, 2, 787-794 (1984) · Zbl 0512.39001 · doi:10.2307/1999107
[20] Dumitriu, Ioana; Pal, Soumik, Sparse regular random graphs: Spectral density and eigenvectors, Ann. Probab., 40, 5, 2197-2235 (2012) · Zbl 1255.05173 · doi:10.1214/11-AOP673
[21] Dumitriu, Ioana; Johnson, Tobias; Pal, Soumik; Paquette, Elliot, Functional limit theorems for random regular graphs, Probab. Theory Related Fields, 156, 3-4, 921-975 (2013) · Zbl 1271.05088 · doi:10.1007/s00440-012-0447-y
[22] Esseen, C. G., On the Kolmogorov-Rogozin inequality for the concentration function, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 5, 210-216 (1966) · Zbl 0142.14702 · doi:10.1007/BF00533057
[23] Esseen, C. G., On the concentration function of a sum of independent random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9, 290-308 (1968) · Zbl 0195.19303 · doi:10.1007/BF00531753
[24] Friedman, Joel, A proof of Alon’s second eigenvalue conjecture and related problems, Mem. Amer. Math. Soc., 195, 910, viii+100 pp. (2008) · Zbl 1177.05070 · doi:10.1090/memo/0910
[25] FKS J. Friedman, J. Kahn, and E. Szemer\'edi, On the second eigenvalue of random regular graphs, in Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing, ACM, New York, 1989, pp. 587-598.
[26] Girko, V. L., The circular law, Teor. Veroyatnost. i Primenen., 29, 4, 669-679 (1984) · Zbl 0565.60034
[27] G\"{o}tze, Friedrich; Tikhomirov, Alexander, The circular law for random matrices, Ann. Probab., 38, 4, 1444-1491 (2010) · Zbl 1203.60010 · doi:10.1214/09-AOP522
[28] Greenhill, Catherine; McKay, Brendan D.; Wang, Xiaoji, Asymptotic enumeration of sparse \(0-1\) matrices with irregular row and column sums, J. Combin. Theory Ser. A, 113, 2, 291-324 (2006) · Zbl 1083.05007 · doi:10.1016/j.jcta.2005.03.005
[29] Hal\'{a}sz, G\'{a}bor, On the distribution of additive arithmetic functions, Acta Arith., 27, 143-152 (1975) · Zbl 0256.10028 · doi:10.4064/aa-27-1-143-152
[30] Hal\'{a}sz, G., Estimates for the concentration function of combinatorial number theory and probability, Period. Math. Hungar., 8, 3-4, 197-211 (1977) · Zbl 0336.10050 · doi:10.1007/BF02018403
[31] Hoeffding, Wassily, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc., 58, 13-30 (1963) · Zbl 0127.10602
[32] Hoory, Shlomo; Linial, Nathan; Wigderson, Avi, Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.), 43, 4, 439-561 (2006) · Zbl 1147.68608 · doi:10.1090/S0273-0979-06-01126-8
[33] Kahn, Jeff; Koml\'{o}s, J\'{a}nos; Szemer\'{e}di, Endre, On the probability that a random \(\pm1\)-matrix is singular, J. Amer. Math. Soc., 8, 1, 223-240 (1995) · Zbl 0829.15018 · doi:10.2307/2152887
[34] Kesten, Harry, Symmetric random walks on groups, Trans. Amer. Math. Soc., 92, 336-354 (1959) · Zbl 0092.33503 · doi:10.2307/1993160
[35] Kesten, Harry, A sharper form of the Doeblin-L\'{e}vy-Kolmogorov-Rogozin inequality for concentration functions, Math. Scand., 25, 133-144 (1969) · Zbl 0218.60035 · doi:10.7146/math.scand.a-10950
[36] Litvak, Alexander E.; Lytova, Anna; Tikhomirov, Konstantin; Tomczak-Jaegermann, Nicole; Youssef, Pierre, Anti-concentration property for random digraphs and invertibility of their adjacency matrices, C. R. Math. Acad. Sci. Paris, 354, 2, 121-124 (2016) · Zbl 1388.60039 · doi:10.1016/j.crma.2015.12.002
[37] Litvak, Alexander E.; Lytova, Anna; Tikhomirov, Konstantin; Tomczak-Jaegermann, Nicole; Youssef, Pierre, Adjacency matrices of random digraphs: Singularity and anti-concentration, J. Math. Anal. Appl., 445, 2, 1447-1491 (2017) · Zbl 1344.05126 · doi:10.1016/j.jmaa.2016.08.020
[38] LLTTYfirstpart A. E. Litvak, A. Lytova, K. Tikhomirov, N. Tomczak-Jaegermann,andP. Youssef, The smallest singular value of a shifted \(d\)-regular random square matrix, Probab. Theory Related Fields (to appear). · Zbl 1411.60015
[39] LLTTYthirdpart A. E. Litvak, A. Lytova, K. Tikhomirov, N. Tomczak-Jaegermann,andP. Youssef, The circular law for sparse random regular digraphs, arXiv:1801.05576 (2018). · Zbl 1392.05100
[40] Litvak, Alexander E.; Lytova, Anna; Tikhomirov, Konstantin; Tomczak-Jaegermann, Nicole; Youssef, Pierre, The rank of random regular digraphs of constant degree, J. Complexity, 48, 103-110 (2018) · Zbl 1392.05100 · doi:10.1016/j.jco.2018.05.004
[41] Litvak, A. E.; Pajor, A.; Rudelson, M.; Tomczak-Jaegermann, N., Smallest singular value of random matrices and geometry of random polytopes, Adv. Math., 195, 2, 491-523 (2005) · Zbl 1077.15021 · doi:10.1016/j.aim.2004.08.004
[42] Litvak, Alexander E.; Rivasplata, Omar, Smallest singular value of sparse random matrices, Studia Math., 212, 3, 195-218 (2012) · Zbl 1277.60016 · doi:10.4064/sm212-3-1
[43] McKay, Brendan D., The expected eigenvalue distribution of a large regular graph, Linear Algebra Appl., 40, 203-216 (1981) · Zbl 0468.05039 · doi:10.1016/0024-3795(81)90150-6
[44] McKay, Brendan D., Asymptotics for \(0-1\) matrices with prescribed line sums. Enumeration and design, Waterloo, Ont., 1982, 225-238 (1984), Academic Press, Toronto, ON · Zbl 0552.05017
[45] Miroshnikov, A. L., Estimates for a multidimensional L\'{e}vy concentration function, Teor. Veroyatnost. i Primenen.. Theory Probab. Appl., 34 34, 3, 535-540 (1990) (1989) · Zbl 0692.60018 · doi:10.1137/1134064
[46] Puder, Doron, Expansion of random graphs: new proofs, new results, Invent. Math., 201, 3, 845-908 (2015) · Zbl 1320.05115 · doi:10.1007/s00222-014-0560-x
[47] Rebrova, Elizaveta; Tikhomirov, Konstantin, Coverings of random ellipsoids, and invertibility of matrices with i.i.d. heavy-tailed entries, Israel J. Math., 227, 2, 507-544 (2018) · Zbl 1405.60012 · doi:10.1007/s11856-018-1732-y
[48] Rudelson, Mark, Invertibility of random matrices: Norm of the inverse, Ann. of Math. (2), 168, 2, 575-600 (2008) · Zbl 1175.15030 · doi:10.4007/annals.2008.168.575
[49] Rudelson, Mark; Vershynin, Roman, The Littlewood-Offord problem and invertibility of random matrices, Adv. Math., 218, 2, 600-633 (2008) · Zbl 1139.15015 · doi:10.1016/j.aim.2008.01.010
[50] Rudelson, Mark; Vershynin, Roman, Smallest singular value of a random rectangular matrix, Comm. Pure Appl. Math., 62, 12, 1707-1739 (2009) · Zbl 1183.15031 · doi:10.1002/cpa.20294
[51] Rudelson, Mark; Vershynin, Roman, Non-asymptotic theory of random matrices: Extreme singular values. Proceedings of the International Congress of Mathematicians. Volume III, 1576-1602 (2010), Hindustan Book Agency, New Delhi · Zbl 1227.60011
[52] Rudelson, Mark; Vershynin, Roman, Delocalization of eigenvectors of random matrices with independent entries, Duke Math. J., 164, 13, 2507-2538 (2015) · Zbl 1352.60007 · doi:10.1215/00127094-3129809
[53] Rudelson, Mark; Vershynin, Roman, No-gaps delocalization for general random matrices, Geom. Funct. Anal., 26, 6, 1716-1776 (2016) · Zbl 1375.60027 · doi:10.1007/s00039-016-0389-0
[54] Tao, Terence; Vu, Van, On the singularity probability of random Bernoulli matrices, J. Amer. Math. Soc., 20, 3, 603-628 (2007) · Zbl 1116.15021 · doi:10.1090/S0894-0347-07-00555-3
[55] Tao, Terence; Vu, Van, Random matrices: the circular law, Commun. Contemp. Math., 10, 2, 261-307 (2008) · Zbl 1156.15010 · doi:10.1142/S0219199708002788
[56] Tao, Terence; Vu, Van H., Inverse Littlewood-Offord theorems and the condition number of random discrete matrices, Ann. of Math. (2), 169, 2, 595-632 (2009) · Zbl 1250.60023 · doi:10.4007/annals.2009.169.595
[57] TY K. Tikhomirov and P. Youssef, The spectral gap of dense random regular graphs, arXiv:1610.01765 (2016). Ann. Probab. (to appear).
[58] Tran, Linh V.; Vu, Van H.; Wang, Ke, Sparse random graphs: Eigenvalues and eigenvectors, Random Structures Algorithms, 42, 1, 110-134 (2013) · Zbl 1257.05089 · doi:10.1002/rsa.20406
[59] Vershynin, Roman, Introduction to the non-asymptotic analysis of random matrices. Compressed sensing, 210-268 (2012), Cambridge Univ. Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.