×

Two-dimensional algebra in lattice gauge theory. (English) Zbl 1446.81031

Summary: We provide a visual and intuitive introduction to effectively calculating in 2-groups along with explicit examples coming from non-abelian 1- and 2-form gauge theory. In particular, we utilize string diagrams, tools similar to tensor networks, to compute the parallel transport along a surface using approximations on a lattice. We prove a convergence theorem for the surface transport in the continuum limit. Locality is used to define infinitesimal parallel transport, and two-dimensional algebra is used to derive finite versions along arbitrary surfaces with sufficient orientation data. The correct surface ordering is dictated by two-dimensional algebra and leads to an interesting diagrammatic picture for gauge fields interacting with particles and strings on a lattice. The surface ordering is inherently complicated, but we prove a simplification theorem confirming earlier results of Schreiber and Waldorf. Assuming little background, we present a simple way to understand some abstract concepts of higher category theory. In doing so, we review all the necessary categorical concepts from the tensor network point of view as well as many aspects of higher gauge theory.{
©2019 American Institute of Physics}

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Wood, C. J.; Biamonte, J. D.; Cory, D. G., Tensor networks and graphical calculus for open quantum systems, Quantum Inf. Comput., 15, 9-10, 759-811 (2015) · doi:10.26421/QIC15.9-10
[2] Abramsky, S.; Coecke, B., A categorical semantics of quantum protocols (2004)
[3] Orús, R., A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Ann. Phys., 349, 117-158 (2014) · Zbl 1343.81003 · doi:10.1016/j.aop.2014.06.013
[4] Bonesteel, N., Topological quantum computation
[5] Schreiber, U.; Waldorf, K., Smooth functors vs. differential forms, Homol., Homotopy Appl., 13, 143-203 (2011) · Zbl 1230.53025 · doi:10.4310/hha.2011.v13.n1.a7
[6] Bénabou, J., Introduction to bicategories, Reports of the Midwest Category Seminar, 1-77 (1967) · Zbl 1375.18001 · doi:10.1007/bfb0074299
[7] Joyal, A.; Street, R.; Verity, D., Traced monoidal categories, Math. Proc. Cambridge Philos. Soc., 119, 3, 447-468 (1996) · Zbl 0845.18005 · doi:10.1017/s0305004100074338
[8] Baez, J. C.; Huerta, J., An invitation to higher gauge theory, Gen. Relativ. Gravitation, 43, 2335-2392 (2011) · Zbl 1225.83001 · doi:10.1007/s10714-010-1070-9
[9] Baez, J. C.; Lauda, A., Higher dimensional algebra V: 2-groups, Theory Appl. Categories, 12, 423-491 (2004) · Zbl 1056.18002
[10] Pfeiffer, H., Higher gauge theory and a non-Abelian generalization of 2-form electrodynamics, Ann. Phys., 308, 447-477 (2003) · Zbl 1056.70013 · doi:10.1016/s0003-4916(03)00147-7
[11] Girelli, F.; Pfeiffer, H., Higher gauge theory—Differential versus integral formulation, J. Math. Phys., 45, 3949-3971 (2004) · Zbl 1071.53011 · doi:10.1063/1.1790048
[12] Schreiber, U.; Waldorf, K., Connections on non-Abelian gerbes and their holonomy, Theory Appl. Categories, 28, 476-540 (2013) · Zbl 1279.53024
[13] Schreiber, U., Differential cohomology in a cohesive topos (2013)
[14] Parzygnat, A. J., Gauge invariant surface holonomy and monopoles, Theory Appl. Categories, 30, 42, 1319-1428 (2015) · Zbl 1341.53078
[15] Baez, J. C.; Schreiber, U., Higher gauge theory: 2-connections on 2-bundles (2004)
[16] Kalb, M.; Ramond, P., Classical direct interstring actions, Phys. Rev. D, 9, 2273-2284 (1974) · doi:10.1103/physrevd.9.2273
[17] Teitelboim, C., Gauge invariance for extended objects, Phys. Lett. B, 167, 1, 63-68 (1986) · doi:10.1016/0370-2693(86)90546-0
[18] Henneaux, M.; Teitelboim, C., p-form electrodynamics, Found. Phys., 16, 583-617 (1986) · doi:10.1007/bf01889624
[19] Aref’eva, I. Y., Non-Abelian Stokes formula, Theor. Math. Phys., 43, 353-356 (1980) · Zbl 0449.53028 · doi:10.1007/bf01018469
[20] Makeenko, Y., Methods of Contemporary Gauge Theory (2002) · Zbl 1009.81002
[21] Whitehead, J. H. C., Combinatorial homotopy. II, Bull. Am. Math. Soc., 55, 453-496 (1949) · Zbl 0040.38801 · doi:10.1090/s0002-9904-1949-09213-3
[22] Attal, R., Combinatorics of non-Abelian gerbes with connection and curvature, Ann. Fond. Broglie, 29, 609-634 (2004) · Zbl 1329.55018 · doi:10.1090/pspum/048/974342
[23] Breen, L.; Messing, W., Differential geometry of gerbes, Adv. Math., 198, 732-846 (2005) · Zbl 1102.14013 · doi:10.1016/j.aim.2005.06.014
[24] Wockel, C., Principal 2-bundles and their gauge 2-groups, Forum Math., 23, 3, 565-610 (2011) · Zbl 1232.55013 · doi:10.1515/form.2011.020
[25] Waldorf, K., A global perspective to connections on principal 2-bundles, Forum Math., 30, 809-843 (2017) · doi:10.1515/forum-2017-0097
[26] Segal, G.; Tilmann, U., The definition of conformal field theory, Topology, Geometry and Quantum Field Theory, London Mathematical Society Lecture Note Series, 421-577 (2004) · Zbl 1372.81138
[27] Atiyah, M., New invariants of 3- and 4-dimensional manifolds, Proc. Symp. Pure Math., 48, 285-299 (1988) · Zbl 0667.57018 · doi:10.1090/pspum/048/974342
[28] Baez, J. C.; Dolan, J., Higher-dimensional algebra and topological quantum field theory, J. Math. Phys., 36, 6073-6105 (1995) · Zbl 0863.18004 · doi:10.1063/1.531236
[29] Lurie, J., On the classification of topological field theories, Curr. Dev. Math., 2008, 129-280 · Zbl 1180.81122 · doi:10.4310/cdm.2008.v2008.n1.a3
[30] Schreiber, U.; Waldorf, K., Parallel transport and functors, Homotopy Relat. Struct., 4, 187-244 (2009) · Zbl 1189.53026
[31] Schreiber, U.; Waldorf, K., Local theory for 2-functors on path 2-groupoids, J. Homotopy Relat. Struct., 12, 3, 617-658 (2017) · Zbl 1404.18015 · doi:10.1007/s40062-016-0140-4
[32] Caetano, A.; Picken, R. F., An axiomatic definition of holonomy, Int. J. Math., 05, 835-848 (1994) · Zbl 0816.53016 · doi:10.1142/s0129167x94000425
[33] Wilson, K. G., Confinement of quarks, Phys. Rev. D, 10, 8, 2445-2458 (1974) · doi:10.1103/physrevd.10.2445
[34] Gaiotto, D.; Kapustin, A.; Seiberg, N.; Willett, B., Generalized global symmetries, J. High Energy Phys., 2015, 172 · Zbl 1388.83656 · doi:10.1007/jhep02(2015)172
[35] Mackaay, M.; Picken, R., Holonomy and parallel transport for Abelian gerbes, Adv. Math., 170, 287-339 (2002) · Zbl 1034.53051 · doi:10.1006/aima.2002.2085
[36] Tradler, T.; Wilson, S. O.; Zeinalian, M., Equivariant holonomy for bundles and Abelian gerbes, Commun. Math. Phys., 315, 39-108 (2012) · Zbl 1254.53048 · doi:10.1007/s00220-012-1529-5
[37] Myers, R. C., Dielectric-branes, J. High Energy Phys., 1999, 12, 022 · Zbl 0958.81091 · doi:10.1088/1126-6708/1999/12/022
[38] Palmer, S.; Sämann, C., M-brane models from non-Abelian gerbes, J. High Energy Phys., 2012, 010 · Zbl 1397.81165 · doi:10.1007/jhep07(2012)010
[39] Fiorenza, D.; Sati, H.; Schreiber, U., Multiple M5-branes, string 2-connections, and 7d nonabelian Chern-Simons theory, Adv. Theor. Math. Phys., 18, 229-321 (2014) · Zbl 1322.81066 · doi:10.4310/atmp.2014.v18.n2.a1
[40] Bagger, J.; Lambert, N., Modeling multiple M2’s, Phys. Rev. D, 75, 045020 (2007) · doi:10.1103/physrevd.75.045020
[41] Sämann, C.; Schmidt, L., Towards an M5-brane model I: A 6d superconformal field theory, J. Math. Phys., 59, 4, 043502 (2018) · Zbl 1388.81698 · doi:10.1063/1.5026545
[42] Waldorf, K., Parallel transport in principal 2-bundles, Higher Structures, 2, 1, 57-115 (2018) · Zbl 1432.53030
[43] Chu, C.-S., A theory of non-Abelian tensor gauge field with non-Abelian gauge symmetry G x G, Nucl. Phys., B866, 43-57 (2013) · Zbl 1262.81128 · doi:10.1016/j.nuclphysb.2012.08.013
[44] Schreiber, U., Higher pre-quantized geometry (2015)
[45] Gukov, S.; Kapustin, A., Topological quantum field theory, nonlocal operators, and gapped phases of gauge theories (2013)
[46] Sharpe, E., Notes on generalized global symmetries in QFT, Fortschr. Phys., 63, 11-12, 659-682 (2015) · Zbl 1338.81269 · doi:10.1002/prop.201500048
[47] Chan, H.-M.; Tsou, S. T., Some Elementary Gauge Theory Concepts (1993) · Zbl 0862.53054
[48] Hall, B. C., Quantum Theory for Mathematicians (2013) · Zbl 1273.81001
[49] Kitaev, A.; Kong, L., Models for gapped boundaries and domain walls, Commun. Math. Phys., 313, 2, 351-373 (2012) · Zbl 1250.81141 · doi:10.1007/s00220-012-1500-5
[50] Joyal, A.; Street, R., The geometry of tensor calculus. I, Adv. Math., 88, 1, 55-112 (1991) · Zbl 0738.18005 · doi:10.1016/0001-8708(91)90003-p
[51] Mac Lane, S., Natural associativity and commutativity, Rice Univ. Stud., 49, 4, 28-46 (1963) · Zbl 0244.18008
[52] Weinberg, S., The Quantum Theory of Fields (1995) · Zbl 0959.81002
[53] Tappe, J., Irreducible projective representations of finite groups, Manuscr. Math., 22, 33-45 (1977) · Zbl 0365.20016 · doi:10.1007/bf01182065
[54] Ponto, K.; Shulman, M., Shadows and traces in bicategories, J. Homotopy Relat. Struct., 8, 151-200 (2013) · Zbl 1298.18006 · doi:10.1007/s40062-012-0017-0
[55] Schreiber, U., Higher prequantum geometry (2016) · Zbl 1513.81091
[56] Baez, J.; Muniain, J. P., Gauge Fields, Knots and Gravity (1994) · Zbl 0843.57001
[57] Husemöller, D., Fibre Bundles (1994)
[58] Milnor, J. W.; Stasheff, J. D., Characteristic Classes (1974) · Zbl 0298.57008
[59] Wedderburn, J. H. M., Lectures on Matrices (1964) · Zbl 0121.26101
[60] Nelson, E., Topics in Dynamics. I: Flows (1969) · Zbl 0197.10702
[61] Abbott, S., Understanding Analysis (2015) · Zbl 1318.26001
[62] Bryant, V., Metric Spaces (1985) · Zbl 0555.54001
[63] Witten, E.; Tilmann, U., Conformal field theory in four and six dimensions, Topology, Geometry and Quantum Field Theory, 405-419 (2004) · Zbl 1101.81096
[64] Berwick-Evans, D.; Pavlov, D., Smooth one-dimensional topological field theories are vector bundles with connection (2015)
[65] Picken, R., TQFT’s and gerbes, Algebr. Geom. Topol., 4, 243-272 (2004) · Zbl 1058.57023 · doi:10.2140/agt.2004.4.243
[66] Baez, J. C.; Baratin, A.; Freidel, L.; Wise, D. K., Infinite-dimensional representations of 2-groups, Mem. Am. Math. Soc., 219, 1032, vi+120 (2012) · Zbl 1342.18008 · doi:10.1090/s0065-9266-2012-00652-6
[67] Weeks, J. R., The Shape of Space (2001)
[68] Sullivan, D., “Discrete models of geometry and the infinity algebras of topology,” A Lecture Given at the Stony Brook Mathematics Colloquium, April 29, 2010, Video available at .
[69] Martins, J. F.; Miković, A., Lie crossed modules and gauge-invariant actions for 2-BF theories, Adv. Theor. Math. Phys., 15, 4, 1059-1084 (2011) · Zbl 1296.81062 · doi:10.4310/atmp.2011.v15.n4.a4
[70] Rey, S.-J.; Sugino, F., A nonperturbative proposal for nonAbelian tensor gauge theory and dynamical quantum Yang-Baxter maps (2010)
[71] Schreiber, U., From loop space mechanics to nonAbelian strings (2005)
[72] Miller, C., The zigzag Hochschild complex (2015)
[73] Ganter, N.; Kapranov, M., Representation and character theory in 2-categories, Adv. Math., 217, 5, 2268-2300 (2008) · Zbl 1136.18001 · doi:10.1016/j.aim.2007.10.004
[74] Ganter, N.; Usher, R., Representation and character theory of finite categorical groups, Theory Appl. Categories, 31, 21, 542-570 (2016) · Zbl 1401.18017
[75] Henriques, A.; Penneys, D.; Tener, J., Categorified trace for module tensor categories over braided tensor categories, Doc. Math., 21, 1089-1149 (2016) · Zbl 1360.18011
[76] Baez, J. C.; Wise, D. K., Teleparallel gravity as a higher gauge theory, Commun. Math. Phys., 333, 1, 153-186 (2015) · Zbl 1308.83017 · doi:10.1007/s00220-014-2178-7
[77] Chatterjee, S.; Lahiri, A.; Sengupta, A. N., Path space connections and categorical geometry, J. Geom. Phys., 75, 129-161 (2014) · Zbl 1280.81087 · doi:10.1016/j.geomphys.2013.09.006
[78] Orland, P., Duality for non-Abelian lattice fields, Nucl. Phys. B, 163, 275-288 (1980) · doi:10.1016/0550-3213(80)90403-4
[79] Orland, P., Frustrating lattice QCD: I. Constructing a non-Abelian monopole condensate, Phys. Lett. B, 122, 1, 78-82 (1983) · doi:10.1016/0370-2693(83)91172-3
[80] Orland, P., “Disorder, frustration and semiclassical calculations in lattice gauge theories,” Report No. ICTP-83-84-49, 1984.
[81] Lipstein, A. E.; Reid-Edwards, R. A., Lattice gerbe theory, J. High Energy Phys., 2014, 9, 034 · Zbl 1333.81292 · doi:10.1007/jhep09(2014)034
[82] Witten, E., Bound states of strings and p-branes, Nucl. Phys. B, 460, 335-350 (1996) · Zbl 1003.81527 · doi:10.1016/0550-3213(95)00610-9
[83] Zwiebach, B., A First Course in String Theory (2009) · Zbl 1185.81005
[84] Denef, F.; Sevrin, A.; Troost, J., Non-Abelian Born-Infeld versus string theory, Nucl. Phys. B, 581, 135-155 (2000) · Zbl 0984.81104 · doi:10.1016/s0550-3213(00)00278-9
[85] Moore, G. W., What is a brane?, Not. AMS, 52, 2, 214-215 (2005) · Zbl 1232.81047
[86] Munkres, J. R., Analysis on Manifolds (1991) · Zbl 0743.26006
[87] Weisstein, E. W., “Power sum,” From MathWorld—A Wolfram Web Resource, (last accessed July 13, 2018).
[88] Parzygnat, A. J., Some 2-categorical aspects in physics (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.