×

Grid-characteristic numerical method for low-velocity impact testing of fiber-metal laminates. (English) Zbl 1446.74077

Summary: The grid-characteristic numerical method (GCM) for hyperbolic equations systems is applied in many science fields – gas dynamics, hydrodynamics, plasma dynamics, etc. Its application for problems of dynamics of deformable solids is less popular, especially in comparison with finite elements methods. GCM shows good results and high performance for elastic wave problems in the approximation of small deformations – seismic survey and ultrasound non-destructive testing in medicine, aviation and railway industry. Low-velocity impacts (hail, dropped tool, bird strike, etc.) are one of the most dangerous load types for polymer composites. They cause barely visible impact damage (BVID) that can only be detected by a thorough ultrasound testing, but severely reduces the residual strength of the material, especially for a compression load along the surface. This testing increases the operating cost, and its necessity can be easily missed, which greatly reduces the reliability of polymer composites. Hybrid fiber-metal composites (GLARE, ARALL, titanium composite laminates) were developed to unify the advantageous properties of polymer composites and metal. The addition of a thin metal layer (1–2 mm) helps to reduce the impact vulnerability of polymer composites in case of a penetration or significant deformations of the material. The application of GCM for low-velocity impact problems can help to explain the damage pattern in fiber-metal composites in case of low-velocity strike, including delamination effects, by modelling elastic wave processes in the complex anisotropicmedium. This article contains the brief description of the GCM and numerical results that were obtained for model problems of a low-velocity impact on titanium composite laminates.

MSC:

74A40 Random materials and composite materials
74M20 Impact in solid mechanics
74R99 Fracture and damage
74S99 Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] Abrate, S., Impact on laminated composite materials, Appl.Mech. Rev., 44, 155-190, (1991) · doi:10.1115/1.3119500
[2] Richardson, M. O. W.; Wisheart, M. J., Review of low-velocity impact properties of compositematerials, Composites, Part A, 29, 1123-1131, (1996) · doi:10.1016/1359-835X(96)00074-7
[3] Abrate, S., Impact on laminated composites: recent advances, Appl.Mech. Rev., 47, 517-544, (1994) · doi:10.1115/1.3111065
[4] Cantwell, W. J.; Morton, J., The impact resistance of composite materials—a review, Composites, 22, 347-362, (1991) · doi:10.1016/0010-4361(91)90549-V
[5] Robinson, P.; Davies, G. A. O., Impactor mass and specimen geometry effects in low velocity impact of laminated composites, Int. J. Impact Eng., 12, 189-207, (1992) · doi:10.1016/0734-743X(92)90408-L
[6] Delfosse, D.; Poursatip, A., Energy-based approach to impact damage in CFRP laminates, Composites, 28, 647-655, (1997) · doi:10.1016/S1359-835X(96)00151-0
[7] A. Vlot, Low-Velocity Impact Loading on Fibre Reinforced Aluminium Laminates (ARALL) and Other Aircraft Sheet Materials (Tech. Univ. Delft, Delft, The Netherlands, 1991).
[8] Chai, G. B.; Manikandan, P., Low velocity impact response of fibre-metal laminates—a review, Compos. Struct., 107, 363-381, (2014) · doi:10.1016/j.compstruct.2013.08.003
[9] Sadighi, M.; Alderliesten, R. C.; Benedictus, R., Impact resistance of fiber-metal laminates: a review, Int. J. Impact Eng., 49, 77-90, (2012) · doi:10.1016/j.ijimpeng.2012.05.006
[10] M. J. Hinton, A. S. Kaddour, and P. D. Soden, Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise (Elsevier, Amsterdam, London, 2004).
[11] Hinton, M. J.; Kaddour, A. S., Maturity of 3D failure criteria for fibre-reinforced composites: comparison between theories and experiments: Part B of WWFE-II, J. Compos.Mater., 7, 925-966, (2013)
[12] Beklemysheva, K. A.; Ermakov, A. S.; Petrov, I. B.; Vasyukov, A. V., Numerical simulation of the failure of composite materials by using the grid-characteristic method, Math.Models Comput. Simul., 8, 557-567, (2016) · doi:10.1134/S2070048216050033
[13] Petrov, I. B.; Khokhlov, N. I., Modeling 3Dseismic problems using high-performance computer systems, Math. Models Comput. Simul., 6, 342-350, (2014) · doi:10.1134/S2070048214040061
[14] Beklemysheva, K. A.; Danilov, A. A.; Petrov, I. B.; Salamatova, V. Yu.; Vassilevski, Yu. V.; Vasyukov, A. V., Virtual blunt injury of human thorax: age-dependent response of vascular system, Russ. J. Numer. Anal. Math. Model, 30, 259-268, (2015) · Zbl 1327.74104 · doi:10.1515/rnam-2015-0023
[15] Petrov, I. B.; Chelnokov, F. B., Numerical analysis of wave processes and fracture in layered targets, Comput.Math. Math. Phys., 43, 1503-1519, (2003) · Zbl 1136.74333
[16] Petrov, I. B.; Favorskaya, A. V.; Khokhlov, N. I.; Miryakha, V. A.; Sannikov, A. V.; Golubev, V. I., Monitoring the state of the moving train by use of high performance systems and modern computation methods, Math. Models Comput. Simul., 7, 51-61, (2015) · doi:10.1134/S2070048215010081
[17] Hu, N.; Zemba, Y.; Okabe, T.; Yan, C.; Fukunaga, H.; Elmarakbi, A., A new cohesive model for simulating delamination propagation in composite laminates under transverse loads, Mech.Mater., 40, 920-935, (2008) · doi:10.1016/j.mechmat.2008.05.003
[18] Petrov, I. B.; Favorskaya, A. V.; Vasyukov, A. V.; Ermakov, A. S.; Beklemysheva, K. A.; Kazakov, A. O.; Novikov, A. V., Numerical simulation of wave propagation in anisotropic media, Dokl. Math., 30, 778-780, (2015) · Zbl 1395.74048
[19] Favorskaya, A. V., Statement of the problem of numerical simulation of dynamic processes in a continuous linearly elastic medium with anisotropy by the grid-characteristic method, Proceedings of the 54th ScientificMIPT Conference on Problems in Fundamental and Applied Sciences inModern Information Environment, 2, 55-56, (2011)
[20] R. P. Fedorenko Introduction to the Numerical Physics (MIPT, Moscow, 1994) [in Russian].
[21] Chelnokov, F. B., Explicit representation of grid-characteristic schemes for the elasticity equations in twodimensional and three-dimensional spaces, Mat. Model., 18, 96-108, (2006) · Zbl 1132.74049
[22] Petrov, I. B.; Favorskaya, A. V., High-order interpolation on unstructured triangular and tetrahedral grids library, Inform. Tekhnol., 9, 30-32, (2011)
[23] Hashin, Z.; Rotem, A., Fatigue failure criterion for fiber-reinforced materials, J. Compos.Mater., 7, 448-464, (1973) · doi:10.1177/002199837300700404
[24] Puck, A.; Schurmann, H., Failure analysis of FRP laminates by means of physically based phenomenological models, Compos. Sci. Technol., 62, 1633-1662, (2002) · doi:10.1016/S0266-3538(01)00208-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.