×

Pólya-type criteria for conditional strict positive definiteness of functions on spheres. (English) Zbl 1446.41001

The authors provide new sufficient and also some necessary conditions for functions to be conditionally strictly positive definite on spheres \(\mathbb{S}^{d-1}\), \(2 < d\in \mathbb{N}\). This is done by using only monotonicity properties. In the case of strictly positive definite and conditionally negative definite functions on spheres a characterization is given solely in terms of monotonicity properties. Moreover, it is proven that multiply monotone functions are positive definite on spheres up to a certain dimension.

MSC:

41A05 Interpolation in approximation theory
42A82 Positive definite functions in one variable harmonic analysis

Software:

DLMF
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1972), Dover Publications, Inc.: Dover Publications, Inc. New York · Zbl 0543.33001
[2] Arafat, A.; Gregori, P.; Porcu, E., Schoenberg coefficients and curvature at the origin of continuous isotropic positive definite kernels on spheres, Statist. Probab. Lett. (2019)
[3] Beatson, R.; zu Castell, W., Dimension hopping and families of strictly positive definite zonal basis functions on spheres, J. Approx. Theory, 221, 22-37 (2017) · Zbl 1371.41023
[4] Beatson, R.; zu Castell, W., Thinplate splines on the sphere, SIGMA Symmetry Integrability Geom. Methods Appl., 14 (2018) · Zbl 1400.41009
[5] Beatson, R. K.; zu Castell, W.; Xu, Y., A Pólya criterion for (strict) positive-definiteness on the sphere, IMA J. Numer. Anal., 34, 550-568 (2014) · Zbl 1303.42006
[6] Berg, C.; P. Peron, A.; Porcu, E., Schoenberg’s theorem for real and complex Hilbert spheres revisited, J. Approx. Theory, 228, 58-78 (2017) · Zbl 1388.43006
[7] Berg, C.; Porcu, E., From Schoenberg coefficients to Schoenberg functions, Constr. Approx., 45, 217-241 (2017) · Zbl 1362.43004
[8] Bingham, N. H., Positive definite functions on spheres, Math. Proc. Cambridge Phil. Soc., 73, 145-156 (1973) · Zbl 0244.43002
[9] Bissiri, P. G.; Menegatto, V. A.; Porcu, E., Relations between Schoenberg coefficients on real and complex spheres of different dimensions, SIGMA Symmetry Integrability Geom. Methods Appl., 15 (2019) · Zbl 1416.42004
[10] Buhmann, M., New developments in the theory of radial basis function interpolation, (Jetter, K.; Utreras, F. I., Multivariate Approximation: From CAGD to Wavelets (1993), World Scientific), 35-75
[11] Buhmann, M., Radial Basis Functions: Theory and Implementations (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1038.41001
[12] Buhmann, M.; Dai, F., Pointwise approximation with quasi-interpolation by radial basis functions, J. Approx. Theory, 192, 156-192 (2015), URL https://doi.org/10.1016/j.jat.2014.11.005 · Zbl 1312.41005
[13] Buhmann, M.; Micchelli, C. A., Multiply monotone functions for cardinal interpolation, Adv. Appl. Math., 12, 358-386 (1991) · Zbl 0756.41002
[14] Chen, D.; Menegatto, V.; Sun, X., A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc., 131, 2733-2740 (2003) · Zbl 1125.43300
[15] Fuselier, E.; Wright, G., Scattered data interpolation on embedded submanifolds with restricted positive definite kernels: Sobolev error estimates, SIAM J. Numer. Anal., 50, 1753-1776 (2012) · Zbl 1251.41004
[16] Gneiting, T., Strictly and non-strictly positive definite functions on spheres, Bernoulli, 19, 1327-1349 (2013) · Zbl 1283.62200
[17] Guella, J. C.; Menegatto, V. A., Positive definite matrix functions on spheres defined by hypergeometric functions, Integral Transforms Spec. Funct., 1-16 (2019) · Zbl 1428.33010
[18] Guinness, J.; Fuentes, M., Isotropic covariance functions on spheres: Some properties and modeling considerations, J. Multivariate Anal., 143, 143-152 (2016) · Zbl 1328.62543
[19] Guo, K.; Hu, S.; Sun, X., Conditionally positive definite functions and Laplace-Stieltjes integrals, J. Approx. Theory, 74, 249-265 (1993) · Zbl 0832.42005
[20] Huang, C.; Zhang, H.; Robeson, S. M.; Shields, J., Intrinsic random functions on the sphere, Statist. Probab. Lett., 146, 7-14 (2019) · Zbl 1453.60101
[21] Hubbert, S.; Baxter, B., Radial basis functions for the sphere, Recent Prog. Multivar. Approx., 137, 33-47 (2001) · Zbl 1035.41012
[22] Hubbert, S.; Lê Gia, Q. T.; Morton, T. M., Spherical Radial Basis Functions, Theory and Applications (2015), Springer · Zbl 1321.33017
[23] J. Jäger,
[24] Ma, C., Isotropic covariance matrix functions on all spheres, Math. Geosci., 47, 699-717 (2015) · Zbl 1323.62092
[25] McHugh, J. A.M., A proof of Bernstein’s theorem on regularly monotonic functions, 47, 158-360 (1975) · Zbl 0263.26016
[26] Menegatto, V. A., Strictly positive definite kernels on the Hilbert sphere, Appl. Anal., 55, 91-101 (1994) · Zbl 0873.41005
[27] Menegatto, V. A.; Peron, A. P., Conditionally positive definite kernels on Euclidean domains, J. Math. Anal. Appl., 294, 345-359 (2004) · Zbl 1047.32002
[28] Micchelli, C. A., Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constr. Approx., 2, 11-22 (1986) · Zbl 0625.41005
[29] Mueller, C., Spherical harmonics, (Springer Lecture Notes in Mathematics, vol. 17 (1966)) · Zbl 0138.05101
[30] Narcowich, F. J.; Sun, X.; Ward, J. D., Approximation power of RBFs and their associated SBFs: a connection, Adv. Comput. Math., 27, 107-124 (2007) · Zbl 1119.41011
[31] Nie, Z.; Ma, C., Isotropic positive definite functions on spheres generated from those in Euclidean spaces, Proc. Amer. Math. Soc., 147, 3047-3056 (2018) · Zbl 1426.33031
[32] NIST Digital Library of Mathematical Functions (2018), Release 1.0.15 of 2017-06-01, URL http://dlmf.nist.gov/
[33] Powell, M. J.D., The theory of radial basis function approximation in 1990, (Light, W., Advances in Numerical Analysis 2: Wavelets, Subdivision, and Radial Functions (1992)), 105-210 · Zbl 0787.65005
[34] Schoenberg, I. J., Metric spaces and positive definite functions, Trans. Amer. Math. Soc., 44, 522-536 (1938), URL http://www.jstor.org/stable/1989894 · JFM 64.0617.02
[35] Schoenberg, I. J., Positive definite functions on the sphere, Duke Math. J., 9, 96-108 (1942) · Zbl 0063.06808
[36] Trübner, M.; Ziegel, J., Derivatives of isotropic positive definite functions on spheres, Proc. Amer. Math. Soc., 145, 3017-3031 (2017) · Zbl 1365.43004
[37] Widder, D. V., The Laplace Transform (1946), Princeton University Press · JFM 67.0384.01
[38] Williamson, R. E., Multiply monotone functions and their Laplace transforms, Duke Math. J., 23, 189-207 (1956) · Zbl 0070.28501
[39] Xu, Y., Positive definite functions on the unit sphere and integrals of Jacobi polynomials, Proc. Amer. Math. Soc., 146, 2039-2048 (2018) · Zbl 1391.33026
[40] Ziegel, J., Convolution roots and differentiability of isotropic positive definite functions on spheres, Proc. Amer. Math. Soc., 142 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.