×

Spreading speeds of nonlocal KPP equations in almost periodic media. (English) Zbl 1446.35242


MSC:

35R09 Integro-partial differential equations
35K57 Reaction-diffusion equations
35K90 Abstract parabolic equations
35B15 Almost and pseudo-almost periodic solutions to PDEs
45C05 Eigenvalue problems for integral equations
45M20 Positive solutions of integral equations
35B51 Comparison principles in context of PDEs
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
Full Text: DOI

References:

[1] Aronson, D. G.; Weinberger, H. F., Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30, 1, 33-76 (1978) · Zbl 0407.92014
[2] Berestycki, H.; Hamel, F., Front propagation in periodic excitable media, Commun. Pure Appl. Math., 55, 8, 949-1032 (2002) · Zbl 1024.37054
[3] Berestycki, H.; Nadin, G., Spreading speeds for one-dimensional monostable reaction-diffusion equations, J. Math. Phys., 53, 11, Article 115619 pp. (2012) · Zbl 1282.35191
[4] H. Berestycki, G. Nadin, Asymptotic spreading for general heterogeneous Fisher-kpp type equations, preprint, 2015.
[5] Berestycki, H.; Hamel, F.; Nadirashvili, N., The speed of propagation for kpp type problems. I: periodic framework, J. Eur. Math. Soc., 7, 2, 173-213 (2005) · Zbl 1142.35464
[6] Berestycki, H.; Hamel, F.; Roques, L., Analysis of the periodically fragmented environment model. II—biological invasions and pulsating travelling fronts, J. Math. Pures Appl., 84, 8, 1101-1146 (2005) · Zbl 1083.92036
[7] Berestycki, H.; Hamel, F.; Nadin, G., Asymptotic spreading in heterogeneous diffusive excitable media, J. Funct. Anal., 255, 2146-2189 (2008) · Zbl 1234.35033
[8] Berestycki, H.; Hamel, F.; Nadirashvili, N., The speed of propagation for kpp type problems. II: general domains, J. Am. Math. Soc., 23, 1-34 (2010) · Zbl 1197.35073
[9] Berestycki, H.; Coville, J.; Vo, H.-H., On the definition and the properties of the principal eigenvalue of some nonlocal operators, J. Funct. Anal., 271, 10, 2701-2751 (2016) · Zbl 1358.47044
[10] Cheng, C.; Li, W.; Wang, Z., Spreading speeds and travelling waves in a delayed population model with stage structure on a 2d spatial lattice, IMA J. Appl. Math., 73, 4, 592-618 (2008) · Zbl 1155.35474
[11] Coville, J.; Dupaigne, L., Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Anal., Theory Methods Appl., 60, 5, 797-819 (2005) · Zbl 1069.45008
[12] Coville, J.; Dupaigne, L., On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb., Sect. A, Math., 137, 4, 727-755 (2007) · Zbl 1133.35056
[13] Coville, J.; Davila, J.; Martinez, S., Pulsating fronts for nonlocal dispersion and kpp nonlinearity, Ann. Inst. Henri Poincaré (C) Non Linear Anal., 30, 2, 179-223 (2013) · Zbl 1288.45007
[14] Crandall, M. G.; Ishii, H.; Lions, P., User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27, 1, 1-67 (1992) · Zbl 0755.35015
[15] Ding, W.; Liang, X., Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47, 1, 855-896 (2015) · Zbl 1325.45001
[16] Du, Y.; Lin, Z., Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42, 1, 377-405 (2010) · Zbl 1219.35373
[17] Du, Y.; Lou, B., Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17, 10, 2673-2724 (2015) · Zbl 1331.35399
[18] Fink, A., Almost Periodic Differential Equations, Lecture Notes in Mathematics (2006)
[19] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugen., 7, 4, 355-369 (1937) · JFM 63.1111.04
[20] Gartner, J.; Freidlin, M., On the propagation of concentration waves in periodic and random media, Sov. Math. Dokl., 20, 1282-1286 (1979) · Zbl 0447.60060
[21] Guo, J.; Hamel, F., Front propagation for discrete periodic monostable equations, Math. Ann., 335, 3, 489-525 (2006) · Zbl 1116.35063
[22] D. Henry, Geometric theory of semilinear parabolic equations. · Zbl 0456.35001
[23] Hudson, W.; Zinner, B., Existence of traveling waves for a generalized discrete Fisher’s equation, Commun. Appl. Nonlinear Anal., 1, 3 (1994) · Zbl 0859.34006
[24] Jewett, R. I., Spaces with an abstract convolution of measures, Adv. Math., 18, 1, 1-101 (1975) · Zbl 0325.42017
[25] Kolmogorov, A. N., Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskow, Ser. Int., Sec. A, 1, 1-25 (1937) · Zbl 0018.32106
[26] Li, F.; Coville, J.; Wang, X., On eigenvalue problems arising from nonlocal diffusion models, Discrete Contin. Dyn. Syst., 37, 2, 879-903 (2016) · Zbl 1355.45003
[27] Liang, X.; Zhao, X.-Q., Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259, 4, 857-903 (2010) · Zbl 1201.35068
[28] Liang, X.; Zhao, X. Q., Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60, 1, 1-40 (2007) · Zbl 1106.76008
[29] Liang, X.; Zhou, T., Spreading speeds of kpp-type lattice systems in heterogeneous media, Commun. Contemp. Math., 22, 01, Article 1850083 pp. (2020) · Zbl 1437.37103
[30] Lions, P.; Souganidis, P. E., Homogenization of degenerate second-order pde in periodic and almost periodic environments and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 22, 5, 667-677 (2005) · Zbl 1135.35092
[31] Lui, R., Biological growth and spread modeled by systems of recursions. I. Mathematical theory, Math. Biosci., 93, 2, 269-295 (1989) · Zbl 0706.92014
[32] Ma, S.; Weng, P.; Zou, X., Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation, Nonlinear Anal., Theory Methods Appl., 65, 10, 1858-1890 (2006) · Zbl 1162.34051
[33] A. Pazy, Semigroups of linear operators and applications to partial differential equations. · Zbl 0516.47023
[34] Shen, W., Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic kpp models, Trans. Am. Math. Soc., 362, 10, 5125-5168 (2010) · Zbl 1225.35048
[35] Shen, W., Existence of generalized traveling waves in time recurrent and space periodic monostable equations, J. Appl. Anal. Comput., 1, 1, 69-93 (2011) · Zbl 1304.35351
[36] Shen, W., Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations, J. Dyn. Differ. Equ., 23, 1, 1-44 (2011) · Zbl 1223.35103
[37] Shen, W.; Zhang, A., Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differ. Equ., 249, 4, 747-795 (2010) · Zbl 1196.45002
[38] Shigesada, N.; Kawasaki, K.; Teramoto, E., Traveling periodic waves in heterogeneous environments, Theor. Popul. Biol., 30, 143-160 (1986) · Zbl 0591.92026
[39] Souganidis, P. E.; Tarfulea, A., Front propagation for nonlocal kpp reaction-diffusion equations in periodic media, NoDEA. Nonlinear Differ. Equ. Appl., 26, 4 (2019) · Zbl 1423.35212
[40] Tao, T., Higher Order Fourier Analysis, vol. 142 (2012) · Zbl 1277.11010
[41] Weinberger, H. F., Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13, 3, 353-396 (1982) · Zbl 0529.92010
[42] Weinberger, H. F., On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45, 6, 511-548 (2002) · Zbl 1058.92036
[43] Xin, J., Existence of planar flame fronts in convective-diffusive periodic media, Arch. Ration. Mech. Anal., 121, 3, 205-233 (1992) · Zbl 0764.76074
[44] Zlatoš, A., Transition fronts in inhomogeneous Fisher-kpp reaction-diffusion equations, J. Math. Pures Appl., 98, 1, 89-102 (2012) · Zbl 1252.35110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.