×

Asymptotic analysis for a homogeneous bubbling regime Vlasov-Fokker-Planck/Navier-Stokes system. (English) Zbl 1446.35207

Summary: The evolution of a cloud of particles in a compressible fluid can be modeled with a Vlasov-Fokker-Planck equation for the distribution function of the particles coupled with Navier-Stokes or Euler equations for the density and velocity of the fluid. Formal calculations have established the convergence of solution to the mesoscopic model to solutions to the macroscopic Navier-Stokes or Euler model coupled with a Smoluchowski equation as the ratio of the settling time for the microscopic velocity fluctuation of the particles to the characteristic macroscopic time scale goes to zero. This paper provides a rigorous asymptotic analysis for a homogeneous mesoscopic fluid-particle interaction model for particles dispersed in a compressible fluid is provided for the bubbling regime. A relative entropy inequality for a mixed hyperbolic/parabolic system of equations is employed.

MSC:

35Q83 Vlasov equations
35Q84 Fokker-Planck equations
35Q30 Navier-Stokes equations
35Q31 Euler equations
35B40 Asymptotic behavior of solutions to PDEs
76N06 Compressible Navier-Stokes equations
76T10 Liquid-gas two-phase flows, bubbly flows

Software:

Kiva-2
Full Text: DOI

References:

[1] Amsden, A.A.: Kiva-3V Release 2, Improvements to Kiva-3V. Tech. Report, Los Alamos National Laboratory (1999)
[2] Amsden, A.A., O’Rourke, P.J., Butler, T.D.: Kiva-2, A computer program for chemical reactive flows with sprays. Tech. Report, Los Alamos National Laboratory (1989)
[3] Ballew, J.: Vanishing viscosity solutions for the Navier-Stokes-Smoluchowski system for particles in a compressible fluid (2016) Preprint
[4] Ballew, J.; Trivisa, K., Suitable weak solutions and low stratification singular limit for a fluid particle interaction model, Q. Appl. Math., 70, 3, 469-494 (2012) · Zbl 1418.76045 · doi:10.1090/S0033-569X-2012-01310-2
[5] Ballew, J.; Trivisa, K., Viscous and inviscid models in fluid-particle interaction, Commun. Inf. Syst., 13, 1, 45-78 (2013) · Zbl 1305.35015
[6] Ballew, J.; Trivisa, K., Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system, Nonlinear Anal., 91, 1-19 (2013) · Zbl 1284.35303 · doi:10.1016/j.na.2013.06.002
[7] Baranger, C., Boudin, L., Jabin, P.-E., Mancini, S.: A modeling of biospray for the upper airways. In: CEMRACS 2004—mathematics and applications to biology and medicine, ESAIM Proc., vol. 14, EDP Sci., Les Ulis, 2005, pp. 41-47 (electronic) · Zbl 1075.92031
[8] Berres, S.; Bürger, R.; Karlsen, KH; Tory, EM, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64, 1, 41-80 (2003) · Zbl 1047.35071 · doi:10.1137/S0036139902408163
[9] Bouchut, F., Construction of bgk models with a family of kinetic entropies for a given system of conservation laws, J. Stat. Phys., 95, 1, 113-170 (1999) · Zbl 0957.82028 · doi:10.1023/A:1004525427365
[10] Carrillo, JA; Karper, T.; Trivisa, K., On the dynamics of a fluid-particle interaction model: the bubbling regime, Nonlinear Anal., 74, 8, 2778-2801 (2011) · Zbl 1214.35068 · doi:10.1016/j.na.2010.12.031
[11] Carrillo, JA; Goudon, T., Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Diff. Equ., 31, 7-9, 1349-1379 (2006) · Zbl 1105.35088 · doi:10.1080/03605300500394389
[12] Christoforou, C.; Tzavaras, AE, Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity, Arch. Ration. Mech. Anal., 229, 1, 1-52 (2018) · Zbl 1397.35302 · doi:10.1007/s00205-017-1212-2
[13] Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, third ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer, Berlin (2010) · Zbl 1196.35001
[14] Feireisl, E.; Novotný, A.; Sun, Y., Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60, 2, 611-631 (2011) · Zbl 1248.35143 · doi:10.1512/iumj.2011.60.4406
[15] Goudon, T.; Jabin, P-E; Vasseur, A., Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J., 53, 6, 1495-1515 (2004) · Zbl 1085.35117 · doi:10.1512/iumj.2004.53.2508
[16] Kružkov, SN, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81, 123, 228-255 (1970) · Zbl 0202.11203
[17] Mellet, A.; Vasseur, A., Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17, 7, 1039-1063 (2007) · Zbl 1136.76042 · doi:10.1142/S0218202507002194
[18] Mellet, A.; Vasseur, A., Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Commun. Math. Phys., 281, 3, 573-596 (2008) · Zbl 1155.35415 · doi:10.1007/s00220-008-0523-4
[19] Williams, FA, Spray combustion and atomization, Phys. Fluids, 1, 6, 541-545 (1958) · Zbl 0086.41102 · doi:10.1063/1.1724379
[20] Williams, FA, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems (1985), Menlo Park, CA: Benjamin/Cummings Pub, Menlo Park, CA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.