×

Keystone species and vulnerable species in ecological communities: strong or weak interactors? (English) Zbl 1445.92293

Summary: The loss of a species from an ecological community can trigger a cascade of secondary extinctions. The probability of secondary extinction to take place and the number of secondary extinctions are likely to depend on the characteristics of the species that is lost – the strength of its interactions with other species – as well as on the distribution of interaction strengths in the whole community. Analysing the effects of species loss in model communities we found that removal of the following species categories triggered, on average, the largest number of secondary extinctions: (a) rare species interacting strongly with many consumers, (b) abundant basal species interacting weakly with their consumers and (c) abundant intermediate species interacting strongly with many resources. We also found that the keystone status of a species with given characteristics was context dependent, that is, dependent on the structure of the community where it was embedded. Species vulnerable to secondary extinctions were mainly species interacting weakly with their resources and species interacting strongly with their consumers.

MSC:

92D40 Ecology
Full Text: DOI

References:

[1] Abrams, P. A., Implications of dynamically variable traits for identifying, classifying, and measuring direct and indirect effects in ecological communities, Am. Nat., 146, 112-134 (1995)
[2] Abrams, P. A., Describing and quantifying interspecific interactionsa commentary on recent approaches, Oikos, 94, 209-218 (2001)
[3] Benedetti-Cecchi, L., Variance in ecological consumer-resource interactions, Nature, 407, 370-374 (2000)
[4] Berlow, E. L., Strong effects of weak interactions in ecological communities, Nature, 398, 330-334 (1999)
[5] Berlow, E. L.; Navarrete, S. A.; Briggs, C. J.; Power, M. E.; Menge, B. A., Quantifying variation in the strengths of species interactions, Ecology, 80, 2206-2224 (1999)
[6] Borer, T. E.; Anderson, K.; Blanchette, C. A.; Broitman, B.; Cooper, S. D.; Halpern, B. S.; Seabloom, E. W.; Shurin, J. B., Topological approaches to food web analysesa few modifications may improve our insights, Oikos, 99, 397-401 (2002)
[7] Borrvall, C.; Ebenman, B.; Jonsson, T., Biodiversity lessens the risk of cascading extinction in model food webs, Ecol. Lett., 3, 131-136 (2000)
[8] Calder, W. A., Size, function and life history (1984), Harvard University Press: Harvard University Press USA
[9] Ceballos, G.; Ehrlich, P. R., Mammal population losses and the extinction crisis, Science, 296, 904-907 (2002)
[10] Chen, X.; Cohen, J. E., Global stability, local stability and permanence in model food webs, J. Theor. Biol., 212, 223-235 (2001)
[11] Cohen, J. E.; Jonsson, T.; Carpenter, R. S., Ecological community description using the food web, species abundance and body size, Proc. Natl Acad. Sci. USA, 100, 1781-1786 (2003)
[12] De Ruiter, P. C.; Neutel, A. M.; Moore, J. C., Energetics, patterns of interaction strengths, and stability in real ecosystems, Science, 269, 1257-1260 (1995)
[13] Drossel, B.; McKane, A. J.; Quince, C., The impact of nonlinear functional responses on the long-term evolution of food web structure, J. Theor. Biol., 229, 539-548 (2004) · Zbl 1440.92070
[14] Dunne, A. J.; Williams, J. R.; Martinez, D. N., Network structure and biodiversity loss in food websrobustness increases with connectance, Ecol. Lett., 5, 558-567 (2002)
[15] Dunne, J. A.; Williams, R. J.; Martinez, N. D., Food-web structure and network theorythe role of connectance and size, Proc. Natl Acad. Sci. USA, 99, 12917-12922 (2002)
[16] Ebenman, B.; Law, R.; Borrvall, C., Community viability analysisthe response of ecological communities to species loss, Ecology, 85, 2591-2600 (2004)
[17] Emmerson, M.; Yearsley, J. M., Weak interactions, omnivory and emergent food-web properties, Proc. R. Soc. London Ser. BBiol. Sci., 271, 397-405 (2004)
[18] Emmerson, M. C.; Raffaelli, D., Predator-prey body size, interaction strength and the stability of a real food web, J. Anim. Ecol., 73, 399-409 (2004)
[19] Estes, J.; Palmisano, J., Sea otterstheir role in structuring nearshore communities, Science, 185, 1058-1060 (1974)
[20] Haydon, D. T., Maximally stable model ecosystems can be highly connected, Ecology, 81, 2631-2636 (2000)
[21] Hofbauer, J.; Sigmund, K., The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection (1988), Cambridge University Press: Cambridge University Press New York · Zbl 0678.92010
[22] Hughes, J. B.; Daily, G. C.; Ehrlich, P. R., Population diversityits extent and extinction, Science, 278, 689-692 (1997)
[23] Jansen, W., A permanence theorem for replicator and Lotka-Volterra systems, J. Math. Biol., 25, 411-422 (1987) · Zbl 0647.92021
[24] Jansen, V. A.A.; Sigmund, K., Shaken not stirredon permanence in ecological communities, Theor. Popul. Biol., 54, 195-201 (1998) · Zbl 0963.92505
[25] Jansen, V. A.A.; Kokkoris, G. D., Complexity and stability revisited, Ecol. Lett., 6, 498-502 (2003)
[26] Jonsson, T.; Ebenman, B., Effects of predator-prey body size ratios on the stability of food chains, J. Theor. Biol., 193, 407-417 (1998)
[27] Kokkoris, G. D.; Troumbis, A. Y.; Lawton, J. H., Patterns of species interaction strength in assembled theoretical competition communities, Ecol. Lett., 2, 70-74 (1999)
[28] Kokkoris, G. D.; Jansen, V. A.A.; Loreau, M.; Troumbis, A. Y., Variability in interaction strength and implications for biodiversity, J. Anim. Ecol., 71, 362-371 (2002)
[29] Kondoh, M., Foraging adaptation and the relationship between food-web complexity and stability, Science, 299, 1388-1391 (2003)
[30] Krause, A. E.; Frank, K. A.; Mason, D. M.; Ulanowicz, R. E., Compartments revealed in food-web structure, Nature, 426, 282-285 (2003)
[31] Laska, M. S.; Wootton, J. T., Theoretical concepts and empirical approaches to measuring interaction strength, Ecology, 79, 461-476 (1998)
[32] Law, R.; Morton, R. D., Alternative permanent states of ecological communities, Ecology, 74, 1347-1361 (1993)
[33] MacArthur, R. H., Strong, or weak, interactions?, Trans. Conn. Acad. Arts Sci., 44, 177-188 (1972)
[34] May, R., Stability and Complexity in Model Ecosystems (1973), Princeton University Press: Princeton University Press NJ, USA
[35] McCann, K. S., The diversity-stability debate, Nature, 405, 228 (2000)
[36] McCann, K.; Hastings, A.; Huxel, G. R., Weak trophic interactions and the balance of nature, Nature, 395, 794-798 (1998)
[37] Melián, C. J.; Bascompte, J., Food web structure and habitat loss, Ecol. Lett., 5, 37-46 (2002)
[38] Menge, B. A.; Berlow, E. L.; Balchette, C. A.; Navarrete, S. A.; Yamada, S. B., The keystone species conceptvariation in interaction strength in a rocky intertidal habitat, Ecol. Monogr., 64, 249-286 (1994)
[39] Mills, L. S.; Soule, M. E.; Doak, D. F., The keystone-species concept in ecology and conservation, Bioscience, 43, 219-224 (1993)
[40] Neutel, A.; Heesterbeek, J. A.P.; de Ruiter, P. C., Stability in real food websweak links in long loops, Science, 296, 1120-1123 (2002)
[41] Paine, R., Food web complexity and species diversity, Am. Nat., 100, 65-75 (1966)
[42] Paine, R. T., Food-web analysis through field measurement of per capita interaction strength, Nature, 355, 73-75 (1992)
[43] Pimm, S. L., The structure of food webs, Theor. Popul. Biol., 16, 144-158 (1979)
[44] Pimm, S. L., Species deletion and the design of food webs, Oikos, 35, 139-149 (1980)
[45] Pimm, S. L., Balance of Nature? (1991), The University of Chicago Press: The University of Chicago Press Chicago
[46] Pimm, S. L.; Gilpin, M. E., Theoretical issues in conservation biology, (Roughgarden, J.; May, R.; Levin, S., Perspectives in Ecological Theory (1989), Princeton University Press: Princeton University Press Princeton, NJ), 287-305
[47] Power, M. E.; Tilman, D.; Estes, J. A.; Menge, B. A.; Bond, W. J.; Mills, L. S.; Daily, G.; Castilla, J. C.; Lubchenco, J.; Paine, R. T., Challenges in the quest for keystones, Bioscience, 46, 609-620 (1996)
[48] Raffaelli, D.; Hall, S., Assessing the relative importance of trophic links in food webs, (Polis, G.; Winemiller, K., Food WebsIntegration of Patterns and Dynamics (1996), Chapman & Hall: Chapman & Hall NY, USA), 185-191
[49] Roughgarden, J., The theory of coevolution, (Futuyma, D. J.; Slatkin, M., Coevolution (1983), Sinauer Associates Inc., Sunderland: Sinauer Associates Inc., Sunderland MA, USA), 33-64
[50] Rozdilsky, I. D.; Stone, L.; Solow, A., The effect of interaction compartments on stability for competitive systems, J. Theor. Biol., 227, 277-282 (2004) · Zbl 1439.92200
[51] Sanford, E., Regulation of keystone predation by small changes in ocean temperature, Science, 283, 2095-2097 (1999)
[52] Sole, R. V.; Montoya, J. M., Complexity and fragility in ecological networks, Proc. R. Soc. London B Biol. Sci., 268, 2039-2045 (2001)
[53] Springer, A. M.; Estes, J. A.; van Vliet, G. B.; Williams, T. M.; Doak, D. F.; Danner, E. M.; Forney, K. A.; Pfister, B., Sequential megafaunal collapse in the North Pacific Oceanan ongoing legacy of industrial whaling?, Proc. Natl Acad. Sci. USA, 100, 12223-12228 (2003)
[54] Stearns, S. C., The evolutionary significance of phenotypic plasticity, Bioscience, 39, 436-445 (1989)
[55] Teng, J.; McCann, K. S., Dynamics of compartmented and reticulate food webs in relation to energetic flows, Am. Nat., 164, 85-100 (2004)
[56] Thomas, C. D.; Cameron, A.; Green, R. E.; Bakkenes, M.; Beaumont, L. J.; Collingham, Y. C.; Erasmus, B. F.N.; de Siqueira, M. F.; Grainger, A.; Hannah, L.; Hughes, L.; Huntley, B.; van Jaarsveld, A. S.; Midgley, G. F.; Miles, L.; Ortega-Huerta, M. A.; Townsend Peterson, A.; Phillips, O. L.; Williams, S. E., Extinction risk from climate change, Nature, 427, 145-148 (2004)
[57] Thomas, J. A.; Telfer, M. G.; Roy, D. B.; Preston, C. D.; Greenwood, J. J.D.; Asher, J.; Fox, R.; Clarke, R. T.; Lawton, J. H., Comparative losses of British butterflies, birds, and plants and the global extinction crisis, Science, 303, 1879-1881 (2004)
[58] Werner, E. E.; Peacor, S. D., A review of trait-mediated indirect interactions in ecological communities, Ecology, 84, 1083-1100 (2003)
[59] Wootton, J. T., Indirect effects and habitat use in an intertidal communityinteraction chains and interaction modifications, Am. Nat., 141, 71-89 (1993)
[60] Wootton, J. T., Estimates and tests of per capita interaction strengthdiet, abundance, and impact of intertidally foraging birds, Ecol. Monogr., 67, 45-64 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.