×

Dynamical analysis of a logistic model with impulsive Holling type-II harvesting. (English) Zbl 1445.92242

Summary: A logistic model with impulsive Holling type-II harvesting is proposed and investigated in this paper. Here, the species is harvested at fixed moments. By using the techniques derived from the theory of impulsive differential equations, sufficient conditions for both permanence and extinction of the system are established, respectively. Sufficient conditions which ensure the existence, uniqueness, and global attractivity of a positive periodic solution of the system are obtained. Our study shows that impulsive controls play an important role in maintaining the sustainable development of the ecological system. Compared with the linear impulsive capture or continuous nonlinear-type capture, our study shows that the nonlinear impulsive capture could lead to more complicated dynamic behaviors. Numeric simulations are carried out to show the feasibility of the main results. The results obtained here maybe useful to the practical biological economics management.

MSC:

92D25 Population dynamics (general)
34C25 Periodic solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations

References:

[1] Yu, S.B.: Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response. Adv. Differ. Equ. 2014, Article ID 84 (2014) · Zbl 1343.34137 · doi:10.1186/1687-1847-2014-84
[2] He, M.X., Chen, F.D., Li, Z.: Permanence and global attractivity of an impulsive delay logistic model. Appl. Math. Lett. 62, 92-100 (2016) · Zbl 1348.92125 · doi:10.1016/j.aml.2016.07.009
[3] Brauer, F., Sanchez, D.A.: Constant rate population harvesting: equilibrium and stability. Theor. Popul. Biol. 8, 12-30 (1975) · Zbl 0313.92012 · doi:10.1016/0040-5809(75)90036-2
[4] Banks, R.: Growth and Diffusion Phenomena: Mathematical Frameworks and Application. Springer, Berlin (1994) · Zbl 0788.92001 · doi:10.1007/978-3-662-03052-3
[5] Chen, F.D., Chen, X.X., Zhang, H.Y.: Positive periodic solution of a delayed predator-prey system with Holling type II functional response and stage structure for predator. Acta Math. Sci. 26(1), 93-103 (2006) · Zbl 1106.34042
[6] Chen, L.J., Chen, F.D., Chen, L.J.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11(1), 246-252 (2010) · Zbl 1186.34062 · doi:10.1016/j.nonrwa.2008.10.056
[7] Idlango, M.A., Shepherd, J.J., Gear, J.A.: Logistic growth with a slowly varying Holling type II harvesting term. Commun. Nonlinear Sci. Numer. Simul. 49, 81-92 (2017) · Zbl 1229.92075 · doi:10.1016/j.cnsns.2017.02.005
[8] Bainov, D., Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman, New York (1993) · Zbl 0815.34001
[9] Yu, S.B.: Extinction for a discrete competition system with feedback controls. Adv. Differ. Equ. 2017, Article ID 9 (2017) · Zbl 1422.37075 · doi:10.1186/s13662-016-1066-1
[10] Shi, C.L., Wang, Y.Q., Chen, X.Y., et al.: Note on the persistence of a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls. Discrete Dyn. Nat. Soc. 2014, Article ID 682769 (2014) · Zbl 1418.92129
[11] Li, Z., He, M.X.: Hopf bifurcation in a delayed food-limited model with feedback control. Nonlinear Dyn. 76(2), 1215-1224 (2014) · Zbl 1306.93033 · doi:10.1007/s11071-013-1205-0
[12] Liu, Z.J., Guo, S.L., Tan, R.H., et al.: Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations. Appl. Math. Model. 40, 5510-5531 (2016) · Zbl 1465.92095 · doi:10.1016/j.apm.2016.01.008
[13] Liu, Z.J., Wu, J.H., Cheke, R.A.: Coexistence and partial extinction in a delay competitive system subject to impulsive harvesting and stocking. IMA J. Appl. Math. 75(5), 777-795 (2010) · Zbl 1214.34075 · doi:10.1093/imamat/hxq033
[14] Chen, L.J.: Permanence for a delayed predator-prey model of prey dispersal in two-patch environments. J. Appl. Math. Comput. 34, 207-232 (2010) · Zbl 1214.34073 · doi:10.1007/s12190-009-0317-7
[15] He, M.X., Chen, F.D.: Dynamic behaviors of the impulsive periodic multi-species predator-prey system. Comput. Math. Appl. 57(2), 248-265 (2009) · Zbl 1165.34308 · doi:10.1016/j.camwa.2008.09.041
[16] Chen, F.D., Xie, X.D., Li, Z.: Partial survival and extinction of a delayed predator-prey model with stage structure. Appl. Math. Comput. 219(8), 4157-4162 (2012) · Zbl 1311.92154
[17] Chen, L.J., Sun, J.T., Chen, F.D.: Extinction in a Lotka-Volterra competitive system with impulse and the effect of toxic substances. Appl. Math. Model. 40, 2015-2024 (2016) · Zbl 1452.92031 · doi:10.1016/j.apm.2015.09.057
[18] Chen, F.D., Xie, X.D., Miao, Z.S.: Extinction in two species non-autonomous nonlinear competitive system. Appl. Math. Comput. 274, 119-124 (2016) · Zbl 1410.34135
[19] Shi, C.L., Li, Z., Chen, F.D.: Extinction in a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls. Nonlinear Anal., Real World Appl. 13(5), 2214-2226 (2012) · Zbl 1268.34171 · doi:10.1016/j.nonrwa.2012.01.016
[20] Li, Z., Chen, F.D., He, M.X.: Permanence and global attractivity of a periodic predator-prey system with mutual interference and impulses. Commun. Nonlinear Sci. Numer. Simul. 17, 444-453 (2012) · Zbl 1254.34066 · doi:10.1016/j.cnsns.2011.05.026
[21] Chen, L.J., Chen, L.J.: Positive periodic solution of a nonlinear integro-differential prey-competition impulsive model with infinite delays. Nonlinear Anal., Real World Appl. 11(4), 2273-2279 (2010) · Zbl 1197.34122 · doi:10.1016/j.nonrwa.2009.06.016
[22] Chen, B.G.: Permanence for the discrete competition model with infinite deviating arguments. Discrete Dyn. Nat. Soc. 2016, Article ID 1686973 (2016) · Zbl 1368.92137
[23] Chen, L.J., Xie, X.D.: Permanence of an N-species cooperation system with continuous time delays and feedback controls. Nonlinear Anal., Real World Appl. 12(1), 34-38 (2011) · Zbl 1209.34099 · doi:10.1016/j.nonrwa.2010.05.033
[24] Xie, X.D., Xue, Y.L., Wu, R.X., et al.: Extinction of a two species competitive system with nonlinear inter-inhibition terms and one toxin producing phytoplankton. Adv. Differ. Equ. 2016, Article ID 258 (2016) · Zbl 1418.92142 · doi:10.1186/s13662-016-0974-4
[25] Yang, K., Miao, Z.S., Chen, F.D., et al.: Influence of single feedback control variable on an autonomous Holling-II type cooperative system. J. Math. Anal. Appl. 435(1), 874-888 (2016) · Zbl 1334.34108 · doi:10.1016/j.jmaa.2015.10.061
[26] Liu, Z.J., Wang, Q.L.: An almost periodic competitive system subject to impulsive perturbations. Appl. Math. Comput. 231, 377-385 (2014) · Zbl 1410.92105
[27] Lin, Y.H., Xie, X.D., Chen, F.D., et al.: Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes. Adv. Differ. Equ. 2016, Article ID 181 (2016) · Zbl 1419.34158 · doi:10.1186/s13662-016-0887-2
[28] Zhang, T.Q., Ma, W.B., Meng, X.Z.: Dynamical analysis of a continuous-culture and harvest chemostat model with impulsive effect. J. Biol. Syst. 23(4), 555-575 (2015) · Zbl 1343.92302 · doi:10.1142/S021833901550028X
[29] Zhang, M., Song, G.H., Chen, L.S.: A state feedback impulse model for computer worm control. Nonlinear Dyn. 85(3), 1561-1569 (2016) · Zbl 1349.93172 · doi:10.1007/s11071-016-2779-0
[30] Wei, C.J., Liu, J.N., Chen, L.S.: Homoclinic bifurcation of a ratio-dependent predator-prey system with impulsive harvesting. Nonlinear Dyn. 89(3) 2001-2012 (2017) · Zbl 1375.92057 · doi:10.1007/s11071-017-3567-1
[31] Jiao, J.J., Cai, S.H., Li, L.M., et al.: Dynamics of a periodic impulsive switched predator-prey system with hibernation and birth pulse. Adv. Differ. Equ. 2015, Article ID 174 (2015) · Zbl 1422.92116 · doi:10.1186/s13662-015-0460-4
[32] Tu, Z. W.; Zha, Z. W.; Zhang, T.; etal., Positive periodic solution for a delay diffusive predator-prey system with Holling type III functional response and harvest impulse, 494-501 (2011) · doi:10.1109/IWACI.2011.6160058
[33] Liu, H.H.: Persistence of the predator-prey model with modified Leslie-Gower Holling-type II schemes and impulse. Int. J. Pure Appl. Math. 55(3), 343-348 (2009) · Zbl 1185.34122
[34] Wang, J.M., Cheng, H.D., Meng, X.Z., et al.: Geometrical analysis and control optimization of a predator-prey model with multi state-dependent impulse. Adv. Differ. Equ. 2017, Article ID 252 (2017) · Zbl 1422.34094 · doi:10.1186/s13662-017-1300-5
[35] Guo, H.J., Chen, L.S., Song, X.Y.: Qualitative analysis of impulsive state feedback control to an algae-fish system with bistable property. Appl. Math. Comput. 271, 905-922 (2015) · Zbl 1410.93053
[36] Zuo, W.J., Jiang, D.Q.: Periodic solutions for a stochastic non-autonomous Holling-Tanner predator-prey system with impulses. Nonlinear Anal. Hybrid Syst. 22, 191-201 (2016) · Zbl 1350.34042 · doi:10.1016/j.nahs.2016.03.004
[37] Sun, S.L., Duan, X.X.: Existence and uniqueness of periodic solution of a state-dependent impulsive control system on water eutrophication. Acta Math. Appl. Sin. 39(1), 138-152 (2016) · Zbl 1363.34160
[38] Yan, C.N., Dong, L.Z., Liu, M.: The dynamical behaviors of a nonautonomous Holling III predator-prey system with impulses. J. Appl. Math. Comput. 47(1-2), 193-209 (2015) · Zbl 1334.92381 · doi:10.1007/s12190-014-0769-2
[39] Hong, L.L., Zhang, L., Teng, Z.D., et al.: Dynamic behaviors of Holling type II predator-prey system with mutual interference and impulses. Discrete Dyn. Nat. Soc. 2014, Article ID 793761 (2014) · Zbl 1418.92106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.