×

On bipartite operators defined by sets of completely different permutations. (English) Zbl 1445.81007

The authors introduce a class of bipartite operators acting on \(H\otimes H\) (\(H\) being an \(n\)-dimensional Hilbert space) defined by a set of \(n\) Completely Different Permutations (CDPs). It is shown that any set of CDPs gives rise to a certain direct sum decomposition of the total Hilbert space which enables one simple construction of the corresponding bipartite operator. In particular, if set of CDPs defines an abelian group, then the corresponding bipartite operator displays an additional property – the partially transposed operator again corresponds to (in general different) set of CDPs. The technique may be used to construct new classes of the so-called PPT (positive under partial transposition) states which are of great importance for quantum information.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P16 Quantum state spaces, operational and probabilistic concepts
20B30 Symmetric groups
15B48 Positive matrices and their generalizations; cones of matrices

References:

[1] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000) · Zbl 1049.81015
[2] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Rev. Mod. Phys., 81, 865 (2009) · Zbl 1205.81012 · doi:10.1103/revmodphys.81.865
[3] Gurvits, L., Classical deterministic complexity of edmonds problem and quantum entanglement, 10-19 (2003) · Zbl 1192.68252
[4] Gühne, O.; Tóth, G., Phys. Rep., 474, 1 (2009) · doi:10.1016/j.physrep.2009.02.004
[5] Chruściński, D.; Sarbicki, G., J. Phys. A: Math. Theor., 47, 483001 (2014) · Zbl 1317.81023 · doi:10.1088/1751-8113/47/48/483001
[6] Chruściński, D.; Kossakowski, A., Phys. Rev. A, 76, 032308 (2007) · doi:10.1103/physreva.76.032308
[7] Chruściński, D.; Kossakowski, A., J. Phys. A: Math. Theor., 41, 215201 (2008) · Zbl 1139.81015 · doi:10.1088/1751-8113/41/21/215201
[8] Chen, K.; Wu, L. A., Quantum Inf. Comput., 3, 193 (2003) · Zbl 1152.81692
[9] Choi, M.-D., Linear Algebra Appl., 12, 95 (1975) · Zbl 0336.15014 · doi:10.1016/0024-3795(75)90058-0
[10] Jamiołkowski, A., Rep. Math. Phys., 3, 275 (1972) · Zbl 0252.47042 · doi:10.1016/0034-4877(72)90011-0
[11] de Pillis, J., Pac. J. Math., 23, 129 (1967) · Zbl 0166.30003 · doi:10.2140/pjm.1967.23.129
[12] Breuer, H.-P., Phys. Rev. Lett., 97, 0805001 (2006) · doi:10.1103/physrevlett.97.080501
[13] Hall, W., J. Phys. A: Math. Gen., 39, 14119 (2006) · Zbl 1106.81020 · doi:10.1088/0305-4470/39/45/020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.