×

On 2-local nonlinear surjective isometries on normed spaces and \(C^*\)-algebras. (English) Zbl 1445.46012

Let \(X\) be a normed linear space. Let \(\tau{\mathcal L}(X)\) denote the set of self mappings \(\Phi\) (not necessarily linear) with the property that, for every \(a,b \in X\), there exists a surjective isometry \(\phi_{a,b}\) (not necessarily linear) such that \(\phi_{a,b}(a) = \Phi(a)\) and \(\phi_{a,b}(b)=\Phi(b)\). It turns out that such a \(\Phi\) need not be a surjection. It is so when \(X = C(K)\) for a first countable compact Hausdorff space \(K\). It is an affine map when the real span of the set of extreme points of the unit ball of \(X\) is dense in \(X\).

MSC:

46B04 Isometric theory of Banach spaces
46B20 Geometry and structure of normed linear spaces
46L05 General theory of \(C^*\)-algebras

References:

[1] Conway, John B., A course in operator theory, Graduate Studies in Mathematics 21, xvi+372 pp. (2000), American Mathematical Society, Providence, RI · Zbl 0936.47001
[2] Dang, T., Real isometries between \(\text{JB}^*\)-triples, Proc. Amer. Math. Soc., 114, 4, 971-980 (1992) · Zbl 0773.46025 · doi:10.2307/2159615
[3] Hatori, Osamu; Oi, Shiho, 2-local isometries on function spaces. Recent trends in operator theory and applications, Contemp. Math. 737, 89-106 (2019), Amer. Math. Soc., Providence, RI · Zbl 1441.46008 · doi:10.1090/conm/737/14860
[4] Kadison, Richard V., Local derivations, J. Algebra, 130, 2, 494-509 (1990) · Zbl 0751.46041 · doi:10.1016/0021-8693(90)90095-6
[5] Kadison, Richard V.; Ringrose, John R., Fundamentals of the theory of operator algebras. Vol. II, Pure and Applied Mathematics 100, i-xiv and 399-1074 (1986), Academic Press, Inc., Orlando, FL · Zbl 0991.46031 · doi:10.1016/S0079-8169(08)60611-X
[6] Larson, David R.; Sourour, Ahmed R., Local derivations and local automorphisms of \({\mathcal{B}}(X)\). Operator theory: operator algebras and applications, Part 2, Durham, NH, 1988, Proc. Sympos. Pure Math. 51, 187-194 (1990), Amer. Math. Soc., Providence, RI · Zbl 0713.47045 · doi:10.1090/pspum/051.2/1077437
[7] Moln\'{a}r, L., Selected preserver problems on algebraic structures of linear operators and on function spaces, Lecture Notes in Mathematics 1895, xiv+232 pp. (2007), Springer-Verlag, Berlin · Zbl 1119.47001
[8] Moln\'{a}r, Lajos, On 2-local *-automorphisms and 2-local isometries of \(\mathcal{B}(H)\), J. Math. Anal. Appl., 479, 1, 569-580 (2019) · Zbl 1490.46059 · doi:10.1016/j.jmaa.2019.06.038
[9] Moln\'{a}r, Lajos; Zalar, Borut, On local automorphisms of group algebras of compact groups, Proc. Amer. Math. Soc., 128, 1, 93-99 (2000) · Zbl 0930.43002 · doi:10.1090/S0002-9939-99-05108-4
[10] O S. Oi, A generalization of the Kowalski-S\l odkowski theorem and its application to 2-local maps on function spaces, preprint, arXiv:1903.11424. · Zbl 1487.46009
[11] Pedersen, Gert K., The linear span of projections in simple \(C^{\ast} \)-algebras, J. Operator Theory, 4, 2, 289-296 (1980) · Zbl 0495.46040
[12] Russo, B.; Dye, H. A., A note on unitary operators in \(C^{\ast} \)-algebras, Duke Math. J., 33, 413-416 (1966) · Zbl 0171.11503
[13] Semrl, Peter, Local automorphisms and derivations on \({\mathcal{B}}(H)\), Proc. Amer. Math. Soc., 125, 9, 2677-2680 (1997) · Zbl 0887.47030 · doi:10.1090/S0002-9939-97-04073-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.