×

Unique solutions for a new coupled system of fractional differential equations. (English) Zbl 1445.34030

Summary: In this article, we discuss a new coupled system of fractional differential equations with integral boundary conditions \[ \begin{cases} D^{\alpha}u(t)+f(t,v(t))=a, \quad 0< t< 1,\\ D^{\beta}v(t)+g(t,u(t))=b,\quad 0< t< 1,\\ u(0)=0,\qquad u(1)=\int_{0}^{1} \phi(t)u(t)\,dt,\\ v(0)=0,\qquad v(1)=\int_{0}^{1} \psi(t)v(t)\,dt, \end{cases} \] where \(1< \alpha,\beta\leq2, f,g \in C([0,1]\times(-\infty,+\infty ),(-\infty,+\infty)), \phi,\psi\in L^{1}[0,1]\), \(a,b\) are constants and \(D\) denotes the usual Riemann-Liouville fractional derivative. Based upon a fixed point theorem of increasing \(\varphi\)-\((h,e)\)-concave operators, we establish the existence and uniqueness of solutions for the new coupled system dependent on two constants. And then the obtained result is well demonstrated with the aid of an interesting example.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34B27 Green’s functions for ordinary differential equations

References:

[1] Kilbas, A, Srivastava, H, Trujillo, J: In: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[2] Podlubny, I: Fractional Differential Equations. Academic Press, New York (1993) · Zbl 0918.34010
[3] Yang, C, Zhai, C, Zhang, L: Local uniqueness of positive solutions for a coupled system of fractional differential equations with integral boundary conditions. Adv. Differ. Equ. 2017, 282 (2017) · Zbl 1422.34072 · doi:10.1186/s13662-017-1343-7
[4] Agarwal, RP, Ahmad, B, Garout, D, Alsaedi, A: Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point boundary conditions. Chaos Solitons Fractals 102, 149-161 (2017) · Zbl 1374.34060 · doi:10.1016/j.chaos.2017.03.025
[5] Ahmad, B, Ntouyas, SK: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17(2), 348-360 (2014) · Zbl 1312.34005 · doi:10.2478/s13540-014-0173-5
[6] Ahmad, B, Ntouyas, SK: Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 266, 615-622 (2015) · Zbl 1410.34008
[7] Ahmad, B, Nieto, J: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[8] Ahmad, B, Nieto, JJ, Alsaedi, A, Aqlan, MH: A coupled system of Caputo-type sequential fractional differential equations with coupled (periodic/anti-periodic type) boundary conditions. Mediterr. J. Math. 6(14) 227 (2017) · Zbl 1386.34008 · doi:10.1007/s00009-017-1027-2
[9] Ahmad, B, Ntouyas, SK, Alsaedi, A: On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals 83, 234-241 (2016) · Zbl 1355.34012 · doi:10.1016/j.chaos.2015.12.014
[10] Ahmad, B, Luca, R: Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions. Chaos Solitons Fractals 104, 378-388 (2017) · Zbl 1380.34118 · doi:10.1016/j.chaos.2017.08.035
[11] Feng, M, Zhang, X, Ge, W: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011, Article ID 720702 (2011) · Zbl 1214.34005 · doi:10.1186/1687-2770-2011-720702
[12] Hao, M, Zhai, C: Application of Schauder fixed point theorem to a coupled system of differential equations of fractional order. J. Nonlinear Sci. Appl. 7, 131-137 (2014) · Zbl 1477.34012
[13] Henderson, J, Luca, R: Positive solutions for a system of fractional differential equations with coupled integral boundary conditions. Appl. Math. Comput. 249, 182-197 (2014) · Zbl 1338.34062
[14] Liu, S, Wang, G, Zhang, L: Existence results for a coupled system of nonlinear neutral fractional differential equations. Appl. Math. Lett. 26, 1120-1124 (2013) · Zbl 1308.34103 · doi:10.1016/j.aml.2013.06.003
[15] Ntouyas, SK, Obaid, M: A coupled system of fractional differential equations with nonlocal integral boundary conditions. Adv. Differ. Equ. 2012, 130 (2012) · Zbl 1350.34010 · doi:10.1186/1687-1847-2012-130
[16] Su, X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64-69 (2009) · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001
[17] Sun, S, Li, Q, Li, Y: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput. Math. Appl. 64, 3310-3320 (2012) · Zbl 1268.34028 · doi:10.1016/j.camwa.2012.01.065
[18] Wang, J, Xiang, H, Liu, Z: Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations. Int. J. Differ. Equ. 2010, Article ID 186928 (2010) · Zbl 1207.34012
[19] Wang, J, Zhang, Y: On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl. Math. Lett. 39, 85-90 (2015) · Zbl 1319.34017 · doi:10.1016/j.aml.2014.08.015
[20] Xu, N, Liu, W: Iterative solutions for a coupled system of fractional differential-integral equations with two-point boundary conditions. Appl. Math. Comput. 244, 903-911 (2014) · Zbl 1335.34125
[21] Yang, W: Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions. Comput. Math. Appl. 63, 288-297 (2012) · Zbl 1238.34047 · doi:10.1016/j.camwa.2011.11.021
[22] Yang, W: Positive solutions for nonlinear semipositone q-difference system with coupled integral boundary conditions. Appl. Math. Comput. 244, 702-725 (2014) · Zbl 1335.39017
[23] Yuan, C, Jiang, D, O’Regan, D: Multiple positive solutions to systems of nonlinear semipositone fractional differential equations with coupled boundary conditions. Electron. J. Qual. Theory Differ. Equ. 13, 1 (2012) · Zbl 1340.34041 · doi:10.14232/ejqtde.2012.1.13
[24] Zhai, C, Hao, M: Multiple positive solutions to nonlinear boundary value problems of a system for fractional differential equations. Sci. World J. 2014, Article ID 817542 (2014)
[25] Zhao, Y, Qin, HC: Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods. Appl. Math. Comput. 257, 417-427 (2015) · Zbl 1338.34033
[26] Amman, H., Parabolic evolution equations with nonlinear boundary conditions, No. 45, 17-27 (1986), Providence · Zbl 0611.35043
[27] Amman, H: Parabolic evolution equations and nonlinear boundary conditions. J. Differ. Equ. 72, 201-269 (1998) · Zbl 0658.34011 · doi:10.1016/0022-0396(88)90156-8
[28] Aronson, DG: A comparison method for stability analysis of nonlinear parabolic problems. SIAM Rev. 20, 245-264 (1978) · Zbl 0384.35035 · doi:10.1137/1020038
[29] Pedersen, M, Lin, Z: Blow-up analysis for a system of heat equations coupled through a nonlinear boundary condition. Appl. Math. Lett. 14, 171-176 (2001) · Zbl 0980.35075 · doi:10.1016/S0893-9659(00)00131-2
[30] Infante, G: Nonlocal boundary value problems with two nonlinear boundary conditions. Commun. Appl. Anal. 12, 279-288 (2008) · Zbl 1198.34025
[31] Infante, G, Pietramala, P: Multiple nonnegative solutions of systems with coupled nonlinear boundary conditions. Math. Methods Appl. Sci. 37, 2080-2090 (2014) · Zbl 1312.34060 · doi:10.1002/mma.2957
[32] Deng, K: Blow-up rates for parabolic systems. Zangew Math. Phys. 47, 132-143 (1996) · Zbl 0854.35054 · doi:10.1007/BF00917578
[33] Deng, K: Global existence and blow-up for a system of heat equations with nonlinear boundary condition. Math. Methods Appl. Sci. 18, 307-315 (1995) · Zbl 0822.35074 · doi:10.1002/mma.1670180405
[34] Zhai, C, Wang, L: φ-(h,e)\((h,e)\)-concave operators and applications. J. Math. Anal. Appl. 454, 571-584 (2017) · Zbl 1419.34046 · doi:10.1016/j.jmaa.2017.05.010
[35] Zhai, C, Ren, J: Some properties of sets, fixed point theorems in ordered product spaces and applications to a nonlinear system of fractional differential equations. Topol. Methods Nonlinear Anal. 49(2), 625-645 (2017) · Zbl 1461.47028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.