×

Stage-structured control on a class of predator-prey system in almost periodic environment. (English) Zbl 1444.34066

Summary: In this paper, we consider a class of stage-structured predator-prey systems with two predators and general functional responses. By applying the comparison theorem, Lyapunov functional and Mawhin’s continuation theorem of coincidence degree theory, this paper gives some new sufficient conditions for the uniform persistence, globally asymptotical stability and almost-periodic solutions for the above system. Two examples and numerical simulations are provided to illustrate the main results of this paper.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34D05 Asymptotic properties of solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34C27 Almost and pseudo-almost periodic solutions to ordinary differential equations
92D25 Population dynamics (general)
47N20 Applications of operator theory to differential and integral equations
34D23 Global stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Bernardelli, H., Population waves, Journal of the Burma Research Society, 31, 1-18 (1941)
[2] Brauer, F.; Castillo-Chavez, C., Mathematical models in population biology and epidemiology (2012), New York: Springer, New York · Zbl 1302.92001
[3] Brauer, F.; Soudack, A. C., Optimal harvesting in predator-prey systems, International Journal of Control, 41, 111-128 (1985) · Zbl 0554.92017 · doi:10.1080/0020718508961113
[4] Chen, F. D., Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Applied Mathematics and Computation, 162, 1279-1302 (2005) · Zbl 1125.93031 · doi:10.1016/j.amc.2004.03.009
[5] Chen, F. D., Almost periodic solution of the non-autonomous two-species competitive model with stage structure, Applied Mathematics and Computation, 181, 685-693 (2006) · Zbl 1163.34030 · doi:10.1016/j.amc.2006.01.055
[6] Chen, F. D.; You, M. S., Permanence, extinction and periodic solution of the predator-prey system with Beddington-DeAngelis functional response and stage structure for prey, Nonlinear Analysis: Real World Applications, 9, 207-221 (2008) · Zbl 1142.34051 · doi:10.1016/j.nonrwa.2006.09.009
[7] Conrad, M., Stability of foodwebs and its relation to species diversity, Journal of Theoretical Biology, 34, 325-335 (1972) · doi:10.1016/0022-5193(72)90165-8
[8] Costantino, R. F., & Desharnais, R. A. (1991). Monographs on theoretical and applied genetics: Vol. 13. Population dynamics and the Tribolium model: Genetics and demography, Berlin: Springer-Verlag. · Zbl 0805.92018
[9] Fan, M.; Wang, K.; Jiang, D. Q., Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments, Mathematical Biosciences, 160, 47-61 (1999) · Zbl 0964.34059 · doi:10.1016/S0025-5564(99)00022-X
[10] Gaines, R. E.; Mawhin, J. L., Coincidence degree and nonlinear differential equations (1977), Berlin: Springer, Berlin · Zbl 0339.47031
[11] Gurney, W. S.; Nisbet, R. M., Ecological dynamics (1998), Oxford: Oxford Univ. Press, Oxford
[12] Huang, C. Y.; Zhao, M.; Zhao, L. C., Permanence of periodic predator-prey system with two predators and stage structure for prey, Nonlinear Analysis: Real World Applications, 11, 503-514 (2010) · Zbl 1189.34085 · doi:10.1016/j.nonrwa.2009.01.001
[13] Huo, H. F.; Li, W. T., Existence and global stability of periodic solutions of a discrete ratio-dependent food chain model with delay, Applied Mathematics and Computation, 162, 1333-1349 (2005) · Zbl 1073.93050 · doi:10.1016/j.amc.2004.03.013
[14] Kawachi, K., A note on persistence about structured population models, Journal of Biological Dynamics, 2, 449-464 (2008) · Zbl 1315.92062 · doi:10.1080/17513750802213581
[15] Kenneth, J. H., Mosquitoes and malaria, Nature, 162, 227 (1948) · doi:10.1038/162227c0
[16] Kuang, Y.; So, J. W. H., Analysis of a delayed two-stage population with space-limited recruitment, SIAM Journal on Applied Mathematics, 55, 1675-1695 (1995) · Zbl 0847.34076 · doi:10.1137/S0036139993252839
[17] Lakshmikantham, V.; Matrosov, V. M.; Sivasundaram, S., Vector Lyapunov functions and stability analysis of nonlinear systems (1991), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0721.34054
[18] Landahl, H. D.; Hanson, B. D., A three stage population model with cannibalism, Bulletin of Mathematical Biology, 37, 11-17 (1975) · Zbl 0295.92015 · doi:10.1007/BF02463488
[19] Leff, L. G.; Bachmann, M. D., Basis of selective predation by the aquatic larvae of the salamander, Ambystoma tigrinum, Freshwater Biology, 19, 87-94 (1988) · doi:10.1111/j.1365-2427.1988.tb00330.x
[20] Leslie, P. H., On the use of matrices in certain population mathematics, Biometrika, 33, 183-212 (1945) · Zbl 0060.31803 · doi:10.1093/biomet/33.3.183
[21] Lewis, E. G., On the generation and growth of a population, Sankhyã, 6, 93-96 (1942)
[22] Li, Z. X.; Chen, L. S.; Huang, J. M., Permanence and periodicity of a delayed ratio-dependent predator-prey model with Holling type functional response and stage structure, Journal of Computational and Applied Mathematics, 233, 173-187 (2009) · Zbl 1188.34113 · doi:10.1016/j.cam.2009.07.008
[23] Li, Y. Q.; Hao, F., Almost periodic dynamics of a delayed three-level food-chain model, International Journal of Control, 89, 2040-2054 (2016) · Zbl 1360.93079 · doi:10.1080/00207179.2016.1147605
[24] Li, Y. K.; Lu, L. H.; Zhu, X. Y., Existence of periodic solutions in n-species food-chain system with impulsive, Nonlinear Analysis: Real World Applications, 7, 414-431 (2006) · Zbl 1130.37417 · doi:10.1016/j.nonrwa.2005.03.009
[25] Li, W. T.; Wu, S. L., Traveling waves in a diffusive predator-prey model with holling type-III functional response, Chaos, Solitons and Fractals, 37, 476-486 (2008) · Zbl 1155.37046 · doi:10.1016/j.chaos.2006.09.039
[26] Liu, Y. Y.; Zhang, X. L.; Zhou, T. J., Multiple periodic solutions of a delayed predator-prey model with non-monotonic functional response and stage structure, Journal of Biological Dynamics, 8, 145-160 (2014) · Zbl 1448.92223 · doi:10.1080/17513758.2014.920530
[27] Liu, Z. J.; Zhong, S. M., An impulsive periodic predator-prey system with Holling type III functional response and diffusion, Applied Mathematical Modelling, 36, 5976-5990 (2012) · Zbl 1349.34047 · doi:10.1016/j.apm.2012.01.032
[28] Ma, Z. N., Mathematical modeling and study on the population ecology (1996), Anhui: Anhui Education Publishing House, Anhui
[29] McKendrick, A. G., Applications of mathematics to medical problems, Proceedings of the Edinburgh Mathematical Society, 40, 98-130 (1926) · JFM 52.0542.04
[30] Myslo, Y. M.; Tkachenko, V. I., Global attractivity in almost periodic single species models, Functional Differential Equations, 18, 269-278 (2011) · Zbl 1319.34128
[31] Neuner, G.; Bannister, P.; Larcher, W., Ice formation and foliar frost resistance in attached and excised shoots from seedlings and adult trees of Nothofagus menziesii, New Zealand Journal of Botany, 35, 221-227 (1997) · doi:10.1080/0028825X.1997.10414158
[32] Sacker, R. J., Global stability in a multi-species periodic Leslie-Gower model, Journal of Biological Dynamics, 5, 549-562 (2011) · Zbl 1225.92060 · doi:10.1080/17513758.2011.554891
[33] Stamova, I. M., Existence and global asymptotic stability of positive periodic solutions of n-species delay impulsive Lotka-Volterra type systems, Journal of Biological Dynamics, 5, 619-635 (2011) · Zbl 1251.34086 · doi:10.1080/17513758.2010.526244
[34] Stamp, N. E.; Bowers, M. D., Variation in food quality and temperature constrain foraging of gregarious caterpillars, Ecology, 71, 1031-1039 (1990) · doi:10.2307/1937371
[35] Tognetti, K., The two stage stochastic population model, Mathematical Biosciences, 25, 195-204 (1975) · Zbl 0317.92026 · doi:10.1016/0025-5564(75)90002-4
[36] Xu, R.; Chaplain, M. A. J.; Davidson, F. A., Permanence and periodicity of a delayed ratio-dependent predator-prey model with stage structure, Journal of Mathematical Analysis and Applications, 303, 602-621 (2005) · Zbl 1073.34090 · doi:10.1016/j.jmaa.2004.08.062
[37] Yang, W. S.; Li, X. P.; Bai, Z. J., Permanence of periodic Holling type-IV predator-prey system with stage structure for prey, Mathematical and Computer Modelling, 48, 677-684 (2008) · Zbl 1156.34327 · doi:10.1016/j.mcm.2007.11.003
[38] Zhang, T. W., Almost periodic oscillations in a generalized Mackey-Glass model of respiratory dynamics with several delays, International Journal of Biomathematics, 7 (2014) · Zbl 1306.34134
[39] Zhang, T. W., Multiplicity of positive almost periodic solutions in a delayed Hassell-Varleytype predator-prey model with harvesting on prey, Mathematical Methods in the Applied Sciences, 37, 686-697 (2014) · Zbl 1292.34077 · doi:10.1002/mma.2826
[40] Zhang, T. W.; Gan, X. R., Existence and permanence of almost periodic solutions for Leslie-Gower predator-prey model with variable delays, Electronic Journal of Differential Equations, 2013, 1-21 (2013) · Zbl 1287.39005
[41] Zhang, T. W.; Gan, X. R., Almost periodic solutions for a discrete fishing model with feedback control and time delays, Communications in Nonlinear Science & Numerical Simulation, 19, 150-163 (2014) · Zbl 1344.92191 · doi:10.1016/j.cnsns.2013.06.019
[42] Zhang, T. W.; Li, Y. K.; Ye, Y., Persistence and almost periodic solutions for a discrete fishing model with feedback control, Communications in Nonlinear Science & Numerical Simulation, 16, 1564-1573 (2011) · Zbl 1221.39020 · doi:10.1016/j.cnsns.2010.06.033
[43] Zhang, T. W.; Li, Y. K.; Ye, Y., On the existence and stability of a unique almost periodic solution of Schoener’s competition model with pure-delays and impulsive effects, Communications in Nonlinear Science & Numerical Simulation, 17, 1408-1422 (2012) · Zbl 1256.34074 · doi:10.1016/j.cnsns.2011.08.008
[44] Zhang, Z. Q.; Zheng, X. W., A periodic stage-structure mode, Applied Mathematics Letters, 16, 1053-1061 (2003) · Zbl 1050.34061 · doi:10.1016/S0893-9659(03)90094-2
[45] Zhen, J.; Ma, Z. N., Periodic solutions for delay differential equations model of plankton allelopathy, Computers & Mathematics with Applications, 44, 491-500 (2002) · Zbl 1094.34542 · doi:10.1016/S0898-1221(02)00163-3
[46] Zhu, Y. L.; Wang, K., Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type II schemes, Journal of Mathematical Analysis and Applications, 384, 400-408 (2011) · Zbl 1232.34077 · doi:10.1016/j.jmaa.2011.05.081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.