×

The uniform symbolic topology property for diagonally \(F\)-regular algebras. (English) Zbl 1444.13001

Let \(R\) be a finite-dimensional Noetherian ring. One of the most interesting questions in recent decades was to find rings satisfy \(p^{(hn)} \subset p^n\) for all \(n\in\mathbb{N}\) for all prime ideals \(p\subset R\) and for some \(h\) independent of \(p\), where \(p^{(m)}\) denotes the \(m\)-th symbolic power of \(p\). Rings for which this number \(h\) can be taken independently of \(p\) (i.e. for which there exists a uniform bound on \(h\) for all \(p\)) are said to have the Uniform Symbolic Topology Property, or USTP for short. In the case of regular rings the problem understood well. In the paper under review, the authors consider the aforementioned problem in the strongly \(F\)-regular case which is weakening of regularity defined for rings of positive characteristic.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13A35 Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure

References:

[1] Benito, A.; Muller, G.; Rajchgot, J.; Smith, K. E., Singularities of locally acyclic cluster algebras, Algebra Number Theory, 9, 4, 913-936 (2015) · Zbl 1350.13017
[2] Blickle, M., Test ideals via algebras of \(p^{- e}\)-linear maps, J. Algebraic Geom., 22, 1, 49-83 (2013), 2993047 · Zbl 1271.13009
[3] Blickle, M.; Schwede, K.; Tucker, K., F-signature of pairs and the asymptotic behavior of Frobenius splittings, Adv. Math., 231, 6, 3232-3258 (2012), 2980498 · Zbl 1258.13008
[4] Blickle, M.; Stäbler, A., Functorial test modules, J. Pure Appl. Algebra, 223, 4, 1766-1800 (2019), 3906525 · Zbl 1441.13014
[5] J. Carvajal-Rojas, Finite torsors over strongly F-regular singularities, ArXiv e-prints, 2017. · Zbl 1491.14067
[6] Dao, H.; De Stefani, A.; Grifo, E.s.; Huneke, C.; Núñez, L., Betancourt: symbolic powers of ideals, (Singularities and Foliations. Geometry, Topology and Applications. Singularities and Foliations. Geometry, Topology and Applications, Springer Proc. Math. Stat., vol. 222 (2018), Springer: Springer Cham), 387-432, 3779569 · Zbl 1404.13023
[7] De Stefani, A.; Polstra, T.; Yao, Y., Globalizing F-invariants, Adv. Math., 350, 359-395 (2019), 3947648 · Zbl 1453.13019
[8] Ein, L.; Lazarsfeld, R.; Smith, K. E., Uniform bounds and symbolic powers on smooth varieties, Invent. Math., 144, 2, 241-252 (2001), MR1826369 (2002b:13001) · Zbl 1076.13501
[9] Hara, N., A characteristic p analog of multiplier ideals and applications, Commun. Algebra, 33, 10, 3375-3388 (2005), MR2175438 (2006f:13006) · Zbl 1090.13003
[10] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, vol. 52 (1977), Springer-Verlag: Springer-Verlag New York, MR0463157 (57 #3116) · Zbl 0367.14001
[11] Hochster, M.; Huneke, C., Tight closure and strong F-regularity, Colloque en l’honneur de Pierre Samuel. Colloque en l’honneur de Pierre Samuel, Orsay, 1987. Colloque en l’honneur de Pierre Samuel. Colloque en l’honneur de Pierre Samuel, Orsay, 1987, Mém. Soc. Math. Fr. (N.S.), 38, 119-133 (1989), MR1044348 (91i:13025) · Zbl 0699.13003
[12] Hochster, M.; Huneke, C., Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Am. Math. Soc., 3, 1, 31-116 (1990), 1017784 · Zbl 0701.13002
[13] Hochster, M.; Huneke, C., Comparison of symbolic and ordinary powers of ideals, Invent. Math., 147, 2, 349-369 (2002), 1881923 (2002m:13002) · Zbl 1061.13005
[14] M. Hochster, C. Huneke, Tight closure in equal characteristic zero, Preprint of a manuscript, 2006.
[15] Huneke, C., Tight Closure and Its Applications, CBMS Regional Conference Series in Mathematics, vol. 88 (1996), Published for the Conference Board of the Mathematical Sciences, Washington, DC, with an appendix by Melvin Hochster. MR1377268 (96m:13001) · Zbl 0930.13004
[16] Huneke, C.; Katz, D.; Validashti, J., Uniform equivalence of symbolic and adic topologies, Ill. J. Math., 53, 1, 325-338 (2009), 2584949 · Zbl 1200.13007
[17] Huneke, C.; Swanson, I., Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series, vol. 336 (2006), Cambridge University Press: Cambridge University Press Cambridge, MR2266432 (2008m:13013) · Zbl 1117.13001
[18] Kunz, E., Characterizations of regular local rings for characteristic p, Am. J. Math., 91, 772-784 (1969), MR0252389 (40 #5609) · Zbl 0188.33702
[19] Ma, L.; Schwede, K., Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers, Invent. Math., 214, 2, 913-955 (2018), 3867632 · Zbl 1436.13009
[20] Mehta, V. B.; Ramanathan, A., Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. Math. (2), 122, 1, 27-40 (1985), MR799251 (86k:14038) · Zbl 0601.14043
[21] Payne, S., Frobenius splittings of toric varieties, Algebra Number Theory, 3, 1, 107-119 (2009), MR2491910 · Zbl 1168.14036
[22] Ramanan, S.; Ramanathan, A., Projective normality of flag varieties and Schubert varieties, Invent. Math., 79, 2, 217-224 (1985), MR778124 (86j:14051) · Zbl 0553.14023
[23] Ramanathan, A., Schubert varieties are arithmetically cohen-macaulay, Invent. Math., 80, 2, 283-294 (1985) · Zbl 0541.14039
[24] Schwede, K., Test ideals in non-\( \mathbb{Q} \)-Gorenstein rings, Transl. Am. Math. Soc., 363, 11, 5925-5941 (2011) · Zbl 1276.13008
[25] Schwede, K.; Tucker, K., A survey of test ideals, (Francisco, C.; Klinger, L. C.; Sather-Wagstaff, S. M.; Vassilev, J. C., Progress in Commutative Algebra 2. Closures, Finiteness and Factorization (2012), Walter de Gruyter GmbH & Co. KG: Walter de Gruyter GmbH & Co. KG Berlin), 39-99 · Zbl 1254.13007
[26] Singh, A. K., The F-signature of an affine semigroup ring, J. Pure Appl. Algebra, 196, 2-3, 313-321 (2005), MR2110527 (2005m:13010) · Zbl 1080.13001
[27] Smith, K. E.; Zhang, W., Frobenius splitting in commutative algebra, (Commutative Algebra and Noncommutative Algebraic Geometry, vol. I. Commutative Algebra and Noncommutative Algebraic Geometry, vol. I, Math. Sci. Res. Inst. Publ., vol. 67 (2015), Cambridge Univ. Press: Cambridge Univ. Press New York), 291-345, 3525475 · Zbl 1359.13006
[28] Smolkin, D., A new subadditivity formula for test ideals, J. Pure Appl. Algebra, 224, 3, 1132-1172 (2020) · Zbl 1423.13051
[29] Swanson, I., Linear equivalence of ideal topologies, Math. Z., 234, 4, 755-775 (2000), 1778408 · Zbl 1010.13015
[30] Walker, R. M., Rational singularities and uniform symbolic topologies, Ill. J. Math., 60, 2, 541-550 (2016), 3680547 · Zbl 1374.13032
[31] Walker, R. M., Uniform symbolic topologies in normal toric rings, J. Algebra, 511, 292-298 (2018), 3834775 · Zbl 1498.13065
[32] Walker, R. M., Uniform symbolic topologies via multinomial expansions, Proc. Am. Math. Soc., 146, 9, 3735-3746 (2018), 3825829 · Zbl 1392.13009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.