×

Numerical study of the influence of recurrent connexions on the signaling in excitable systems: the dynamical effect of noise recycling. (English) Zbl 1443.92021

Summary: Recurrent connexions in dynamical systems provide not only multiple transduction pathway, but also the possibility of the recycling of noise, which may significantly influence the signal character. In this work, its effect is modeled in an excitable system as recycled noise, which includes a delayed stochastic component. Simulation results prove that the noise recycling delay can enhance the noise induced anticoherence resonance in some moderate delay scope. Further investigation suggests that the control effect may come from the additional time scale resonant match introduced by the recycling of noise.

MSC:

92-10 Mathematical modeling or simulation for problems pertaining to biology
92C20 Neural biology
Full Text: DOI

References:

[1] Wambaugh, J. F.; Reichhardt, C.; Olson, C. J.; Marchesoni, F.; Nori, F., Superconducting fluxon pumps and lenses, Phys. Rev. Lett., 83, 5106 (1999)
[2] Matthias, S.; Muller, F., Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets, Nature, 424, 53-57 (2003)
[3] Lutz, C.; Kollmann, M.; Bechinger, C., Single-file diffusion of colloids in one-dimensional channels, Phys. Rev. Lett., 93, 026001 (2004)
[4] Goulding, D.; Melnik, S.; Curtin, D.; Piwonski, T.; Houlihan, J.; Gleeson, J. P.; Huyet, G., Kramers’ law for a bistable system with time-delayed noise, Phys. Rev. E, 76, 031128 (2007)
[5] Borromeo, M.; Marchesoni, F., Stochastic synchronization via noise recycling, Phys. Rev. E, 75, 041106 (2007)
[6] Borromeo, M.; Giusepponi, S.; Marchesoni, F., Recycled noise rectification: an automated Maxwell’s daemon, Phys. Rev. E, 74, 031121 (2006)
[7] Ma, J.; Hou, Z. H.; Xin, H. W., Control coherence resonance by noise recycling, Eur. Phys. J. B, 69, 101-107 (2009)
[8] Ma, J.; Gao, Q., Control of stochastic spike motion in an excitable system via recycled noise, Sci. China Chem., 54, 1504-1509 (2011)
[9] Li, X. Y.; Yang, J. H.; Liu, X. B., The coherence resonance in Van der Pol system induced by noise recycling, Fluctuation Noise Lett., 11, 1250002 (2012)
[10] Chamgoue, A. C.; Yamapi, R.; Woafo, P., Dynamics of a biological system with time-delayed noise, Eur. Phys. J. Plus, 127, 59 (2012)
[11] Zeng, C. H.; Wang, H.; Qing, S.; Hu, J. H.; Li, K. Z., Control of absolute negative mobility via noise recycling procedure, Eur. Phys. J. B, 85, 347 (2012)
[12] Chamgoue, A. C.; Yamapi, R.; Woafo, P., Bifurcations in a birhythmic biological system with time-delayed noise, Nonlinear Dyn., 73, 2157-2173 (2013)
[13] Jia, Z. L.; Mei, D. C., Controlling the noise enhanced stability effect via noise recycling in a metastable system, Eur. Phys. J. B, 85, 139 (2012)
[14] Sun, Z.; Yang, X. L.; Xu, W., Resonance dynamics evoked via noise recycling procedure, Phys. Rev. E, 85, 061125 (2012)
[15] Jia, Z.-L.; Yang, C.-Y.; Mei, D.-C., Asymmetric escape from a metastable state induced by noise recycling in a symmetric triple-well potential, Chin. J. Phys., 52, 1069 (2014)
[16] Lacasta, A. M.; Sagués, F.; Sancho, J. M., Coherence and anticoherence resonance tuned by noise, Phys. Rev. E, 66, 045105 (2002)
[17] Lindner, B.; Schimansky-Geier, L., Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model, Phys. Rev. E, 66, 031916 (2002)
[18] Buldú, J. M.; García-Ojalvo, J.; Mirasso, C. R.; Torrent, M. C.; Sancho, J. M., Effect of external noise correlation in optical coherence resonance, Phys. Rev. E, 64, 051109 (2001)
[19] Masoller, C., Noise-induced resonance in delayed feedback systems, Phys. Rev. Lett., 88, 034102 (2002)
[20] Nesse, W. H.; Negro, C. A.; Bressloff, P. C., Oscillation regularity in noise-driven excitable systems with multi-time-scale adaptation, Phys. Rev. Lett., 101, 088101 (2008)
[21] Apostolico, F.; Gammaitoni, L.; Marchesoni, F.; Santucci, S., Resonant trapping: a failure mechanism in switch transitions, Phys. Rev. E, 55, 36-39 (1997)
[22] Dhamala, M.; Jirsa, V. K.; Ding, M., Enhancement of neural synchrony by time delay, Phys. Rev. Lett., 92, 074104 (2004)
[23] Roxin, A.; Brunel, N.; Hansel, D., Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks, Phys. Rev. Lett., 94, 238103 (2005)
[24] Buric, N.; Todorovic, K.; Vasovic, N., Synchronization of bursting neurons with delayed chemical synapses, Phys. Rev. E, 78, 036211 (2008)
[25] Zeng, C.; Han, Q.; Yang, T.; Wang, H.; Jia, Z., Noise- and delay-induced regime shifts in an ecological system of vegetation, J. Stat. Mech: Theory Exp., 2013, P10017 (2013) · Zbl 1456.92083
[26] Han, Q.; Yang, T.; Zeng, C.; Wang, H.; Liu, Z.; Fu, Y.; Zhang, C.; Tian, D., Impact of time delays on stochastic resonance in an ecological system describing vegetation, Physica A, 408, 96-105 (2014) · Zbl 1395.92183
[27] Jia, Z.-L.; Yang, C.-Y.; Li, C.; Mei, D.-C., Stochastic resonance in a groundwater-dependent plant ecosystem with fluctuations and time delay, J. Stat. Mech: Theory Exp., 2014, P03022 (2014)
[28] Savelev, S.; Marchesoni, F.; Hänggi, P.; Nori, F., Nonlinear signal mixing in a ratchet device, Europhys. Lett., 67, 179 (2004)
[29] Savelev, S.; Marchesoni, F.; Hänggi, P.; Nori, F., Transport via nonlinear signal mixing in ratchet devices, Phys. Rev. E, 70, 066109 (2004)
[30] Wang, Q.; Perc, M.; Duan, Z.; Chen, G., Delay-enhanced coherence resonance of spiral wave in noisy Hodgkin-Huxley neuronal networks, Phys. Lett. A, 372, 5681-5687 (2008) · Zbl 1223.92002
[31] Ji, L.; Li, Q., Turing pattern formation in coupled reaction-diffusion system with distributed delays, J. Chem. Phys., 123, 094509 (2005)
[32] Ji, L.; Xu, W., Controlling the nonlinear chemical signal in a coupled system by delay, Chaos Solitons Fractals, 36, 1261-1266 (2008)
[33] Wang, Q.; Duan, Z.; Perc, M.; Chen, G., Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability, Europhys. Lett., 83, 50008 (2008)
[34] Wang, Q.; Perc, M.; Duan, Z.; Chen, G., Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E, 80, 026206 (2009)
[35] Hindmarsh, J. L.; Rose, R. M., A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. London Ser. B, 221, 87-102 (1984)
[36] Innocenti, G.; Morelli, A.; Genesio, R.; Torcini, A., Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos, Chaos, 17, 043128 (2007) · Zbl 1163.37336
[37] Pikovsky, A. S.; Kurths, J., Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett., 78, 775-778 (1997) · Zbl 0961.70506
[38] Jia, Z. L.; Mei, D. C.; Yang, C. Y.; Li, C., Effects of time delay and noise correlation on noise enhanced stability and resonant activation in a periodically modulated bistable system, Phys. Scr., 89, 015002 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.