×

Stability analysis of predator-prey system with migrating prey and disease infection in both species. (English) Zbl 1443.92013

Summary: We formulated and studied a predator-prey system with migrating prey and disease infection in both species. We used Lotka-Volterra type functional response. Mathematically, we analyzed the dynamics of the system such as existence of non negative equilibria, their stability. The basic reproduction number \(R_0\) for the proposed mathematical model is calculated. Disease is endemic if \(R_0 > 1\). Model is simulated by assuming hypothetical initial values and parameters.

MSC:

92-10 Mathematical modeling or simulation for problems pertaining to biology
92D40 Ecology
Full Text: DOI

References:

[1] Volterra, V., Variazioni e fluttauazionidel numero d individui in species animals conviventii, Mem. R. Accad. Naz. Linciei, 2, 31-33 (1926)
[2] Lotka, A., Elements of Physical Biology (1925), Williams and Wilkins: Williams and Wilkins Baltimore · JFM 51.0416.06
[3] Kermack, W. O.; Mckendrick, A. G., Contributions to the mathematical theory of epidemics, part 1, Proc. R. Soc. A, 115, 5, 700-721 (1927) · JFM 53.0517.01
[4] Maiti, A., Deterministic and stochastic analysis of a ratio-dependent predator-prey system with delay, Nonlinear Anal. Model. Control, 12, 3, 383-398 (2010) · Zbl 1134.92039
[5] Wang, F., Stability and bifurcation of a stage-structured predator-prey model with both discrete and distributed delays, Chaos Solitons Fractals, 46, 19-27 (2013) · Zbl 1258.92045
[6] Haque, M., An eco-epidemiological predator-prey model with standard disease incidence, Math. Methods Appl. Sci. (2008)
[7] Haque, M.; Venturino, E., The role of transmissible diseases in Holling-Tanner predator-prey model, Theor. Popul. Biol., 70, 3, 273-288 (2006) · Zbl 1112.92053
[8] Yi-min, L.; Yan, Z., The control and the reconfigurable control for prey-predator ecosystem with time delay, Appl. Math. Model., 33, 1, 148-160 (2009) · Zbl 1167.34380
[9] Naji, R. K.; Mustafa, A. N., The dynamics of an eco-epidemiological model with nonlinear incidence rate, J. Appl. Math. (2012) · Zbl 1263.92051
[10] Jang, S. R.J.; Baglama, J., Continuous-time predator-prey models with parasites, J. Biol. Dyn., 3, 1, 87-98 (2009) · Zbl 1155.92042
[11] Sinha, S., Modelling a predator-prey system with infected prey in polluted environment, Appl. Math. Model., 34, 7, 1861-1872 (2010) · Zbl 1193.34071
[12] Jana, S.; Kar, T. K., Modeling and analysis of a prey-predator system with disease in the prey, Chaos Solitons Fractals, 47, 42-53 (2013) · Zbl 1258.92038
[13] Johri, A., Study of a prey-predator model with diseased prey, Int. J. Contemp. Math. Sci., 7, 10, 489-498 (2012) · Zbl 1253.92048
[14] Mukhopadhyaya, B.; Bhattacharyya, B., Dynamics of a delay-diffusion prey-predator model with disease in the prey, J. Appl. Math. Comput., 17, 12, 361-377 (2005) · Zbl 1057.92054
[15] Greenhalgh, D.; Haque, M., A predator-prey model with disease in the prey species only, Math. Methods Appl. Sci., 30, 911-929 (2007) · Zbl 1115.92049
[16] Hu, G. P.; Li, X.-L., Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey, Chaos Solitons Fractals, 45, 3, 229-237 (2012) · Zbl 1355.92089
[17] Chattopadhyay, J.; Arino, O., A predator-prey model with disease in prey, Nonlinear Anal., 36, 747-766 (1999) · Zbl 0922.34036
[18] Maoxing, L., An impulsive predator-prey model with communicable disease in the prey species only, Nonlinear Anal. Real World Appl., 10, 5, 3098-3111 (2009) · Zbl 1162.92043
[19] Naji, R. K.; Hasan, K. A., the dynamics of prey-predator model with disease in the prey, J. Math. Comput. Sci., 2, 4, 1052-1072 (2012)
[20] Samanta, G. P., Analysis of a delay nonautonomous predator-prey system with disease in the prey, Nonlinear Anal. Model. Control, 15, 1, 97-108 (2010) · Zbl 1217.93073
[21] Xiao, Y.; Chen, L., Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171, 59-82 (2001) · Zbl 0978.92031
[22] Hilker, F. M.; Schmitz, K., Disease-induced stabilization of predator prey oscillations, J. Theor. Biol., 255, 299-306 (2008) · Zbl 1400.92487
[23] Haque, M., A predator-prey model with disease in the predator, Nonlinear Anal. Real World Appl., 11, 4, 2224-2236 (2010) · Zbl 1197.34074
[24] P.J. Pal, et al. Dynamics of a predator prey model with disease in the predator, Math. Methods Appl. Sci. http://dx.doi.org./10.1002/mma.2988; P.J. Pal, et al. Dynamics of a predator prey model with disease in the predator, Math. Methods Appl. Sci. http://dx.doi.org./10.1002/mma.2988 · Zbl 1370.92142
[25] Han, L.; Zhien, M. A., Four predator prey models with infectious diseases, Math. Comput. Model., 34, 7-8, 849-858 (2001) · Zbl 0999.92032
[26] Hsieh, Y.-H.; Hsiao, C.-K., Predator-prey model with disease infection in both populations, Math. Med. Biol., 25, 247-266 (2008) · Zbl 1154.92040
[27] Dingle, H.; Drake, V. A., What is migration?, BioScience, 57, 113-121 (2007)
[28] en.wikipedia.org/Wiki/Animal-migration; en.wikipedia.org/Wiki/Animal-migration
[29] Mclaren, I. A., Demographic strategy of vertical migration by a marine copepod, Am. Nat., 108, 959, 91-102 (1974)
[30] Hamner, W. M.; Hauri, I. R., Long-distance horizontal migrations of zooplankton (scyphomedusae mastigias), Limnol. Oceanogr., 26, 3, 414-423 (1981)
[31] www.risingkashmir.com/record-3-lakh-migratory-birds-arrive-in-kashmir/; www.risingkashmir.com/record-3-lakh-migratory-birds-arrive-in-kashmir/
[32] listofeverythimg.wordpress.com/2011/03/04/list-of-animals-that-migrate-animal-migration-list/; listofeverythimg.wordpress.com/2011/03/04/list-of-animals-that-migrate-animal-migration-list/
[33] www.iLoveindia.com/wildlife/migratory-birds.html; www.iLoveindia.com/wildlife/migratory-birds.html
[34] Bhattacharyya, R.; Mukhopadhyay, B., Spatial dynamics of nonlinear prey-predator models with prey migration and predator switching, Ecol. Complex., 3, 160-169 (2006)
[35] Berthier, K., Dynamics of a feline virus with two transmission models with exponentially growing host populations, Proc. R. Soc. Lond., 3267, 2049-2056 (2000)
[36] Sun, G.-Q., Dynamical complexity of a spatial predator-prey model with migration, Ecol. Model., 219, 1-2, 248-255 (2008)
[37] De Jong, M. C.M., How does infection depend on the population size?, (Mollison, D. (1994), Cambridge University Press)
[38] http://web.stanford.edu/ jhj1/teachingdocs/Jones-on-R0.pdf; http://web.stanford.edu/ jhj1/teachingdocs/Jones-on-R0.pdf
[39] Prasad, B. S.R. V., Dynamics of additional food provided predator-prey system with mutually interfering predators, Math. Biosci., 246, 176-190 (2013) · Zbl 1281.92071
[40] Holling, C. S., The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Can. Entomol., 91, 293-320 (1959)
[41] Holling, C. S., Some characteristics of simple types of predation and parasitism, Can. Entomol., 91, 385-395 (1959)
[42] Xia, Y., Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotonic functional responses, Appl. Math. Model., 31, 9, 1947-1959 (2007) · Zbl 1167.34342
[43] Tian, X.; Xu, R., Global dynamics of a predator-prey system with Holling type II functional response, Nonlinear Anal. Model. Control, 16, 2, 242-253 (2011) · Zbl 1272.49084
[44] Dawes, J. H.; Souza, M. O., A derivativation of Holling’s type I,II and III functional responses in predator-prey system, J. Theor. Biol., 327, 11-22 (2013) · Zbl 1322.92056
[45] Andrews, J. F., A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10, 707-723 (1968)
[46] Book, H., A food chain system with Holling type IV functional response and impulsive perturbations, Comput. Math. Appl., 60, 1152-1163 (2010) · Zbl 1201.34015
[47] Lian, F.; Xu, Y., Hopf-bifurcation analysis of a predator-prey system with Holling type IV functional response and time delay, Appl. Math. Comput., 215, 1484-1495 (2009) · Zbl 1187.34116
[48] Shen, C., Permanence and global attractivity of the food chain system with Holling type IV functional response, Appl. Math. Comput., 194, 179-185 (2007) · Zbl 1193.34142
[49] Kuang, Y.; Beretta, E., Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36, 4, 389-406 (1998) · Zbl 0895.92032
[50] Xu, R., Persistence and global stability of a ratio dependent prey model with stage-structure, Appl. Math. Comput., 158, 3, 729-744 (2004) · Zbl 1058.92053
[51] Arditi, R.; Ginzburg, L. R., Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol., 139, 311-326 (1989)
[52] Crowley, P. H.; Martin, E. K., Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthol. Soc., 8, 211-221 (1989)
[53] Liu, S.; Beretta, E., A stage-structured predator-prey model of Beddington-DeAgelis type, SIAM J. Appl. Math., 66, 4, 1101-1129 (2006) · Zbl 1110.34059
[54] Hassell, M. P.; Varley, C. C., New inductive population model for insect parasites and its bearing on biological control, Nature, 223, 1133-1137 (1969)
[55] Deangenis, D. L., A model for trophic interaction, Ecology, 56, 881-892 (1975)
[56] Beddington, J. R., Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44, 331-340 (1975)
[57] Ivlev, V. S., Experiment Ecology of the Feeding of Fishes (1961), Yale University Press: Yale University Press New Haven, C.T.
[58] Birkoff, G.; Rota, G. C., Ordinary Differential Equations (1982), Ginn: Ginn Bostan
[59] Sana, S. S.; Purohit, D.; Chaudhury, K., Joint project of fishery and poltury - a bioeconomic model, Appl. Math. Model., 36, 72-86 (2012) · Zbl 1236.91111
[60] Kar, T. K.; Jana, S., A theoretical study on mathematical modelling of an infectious disease with application of optimal control, Biosystems, 111, 37-50 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.