×

Computer algebra, power series and summation. (English) Zbl 1443.33035

Foupouagnigni, Mama (ed.) et al., Orthogonal polynomials. Proceedings of the 2nd AIMS-Volkswagen Stiftung workshop on introduction to orthogonal polynomials and applications, Douala, Cameroon, October 5–12, 2018. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 113-136 (2020).
Summary: Computer algebra systems can do many computations that are relevant for orthogonal polynomials and their representations. In this preliminary training we will introduce some of those important algorithms: the automatic computation of differential equations and formal power series, hypergeometric representations, and the algorithms by Fasenmyer, Gosper, Zeilberger and Petkovšek/van Hoeij.
For the entire collection see [Zbl 1442.33005].

MSC:

33F10 Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.)
33C20 Generalized hypergeometric series, \({}_pF_q\)
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] G. Almkvist, D. Zeilberger, The method of differentiating under the integral sign. J. Symb. Comput. 10, 571-591 (1990) · Zbl 0717.33004 · doi:10.1016/S0747-7171(08)80159-9
[2] Apéry, R.: Irrationalité de ζ(2) et ζ(3). Astérisque 61, 11-13 (1979) · Zbl 0401.10049
[3] H. Böing, W. Koepf, Algorithms for q-hypergeometric summation in computer algebra. J. Symb. Comput. 28, 777-799 (1999) · Zbl 0946.65008 · doi:10.1006/jsco.1998.0339
[4] CAOP: Computer algebra and orthogonal polynomials. www.caop.org
[5] M.C. Fasenmyer, Some generalized hypergeometric polynomials. Ph.D. Thesis, University of Michigan (1945) · Zbl 0032.15402
[6] M.C. Fasenmyer, A note on pure recurrence relations. Am. Math. Mon. 56, 14-17 (1949) · Zbl 0032.41002 · doi:10.1080/00029890.1949.11990232
[7] R.W. Gosper Jr., Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. U. S. A. 75, 40-42 (1978) · Zbl 0384.40001 · doi:10.1073/pnas.75.1.40
[8] D. Gruntz, W. Koepf, Maple package on formal power series. Maple Tech. Newsl. 2(2), 22-28 (1995). Appeared also as SC-93-31.pdf, Konrad-Zuse-Zentrum Berlin, see http://www.mathematik.uni-kassel.de/ koepf/Publikationen/
[9] R. Koekoek, P.A. Lesky, R. Swarttouw, Hypergeometric Orthogonal Polynomials and Theirq-Analogues. Springer Monographs in Mathematics (Springer, Berlin, 2010) · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[10] W. Koepf, On two conjectures of M. S. Robertson. Complex Variables 16, 127-130 (1991) · Zbl 0745.30004
[11] W. Koepf, Power series in computer algebra. J. Symb. Comput. 13, 581-603 (1992) · Zbl 0758.30026 · doi:10.1016/S0747-7171(10)80012-4
[12] W. Koepf, Computeralgebra. Eine algorithmisch orientierte Einführung (Springer, Berlin, 2006) · Zbl 1161.68881
[13] W. Koepf, Hypergeometric Summation. An Algorithmic Approach to Summation and Special Function Identities, 1st edn. (Vieweg, Wiesbaden, 1998); 2nd edn. Springer Universitext (Springer, London, 2014) · Zbl 0909.33001
[14] M.A. Perlstadt, Some recurrences for sums of powers of binomial coefficients. J. Number Theory 27, 304-309 (1987) · Zbl 0626.10010 · doi:10.1016/0022-314X(87)90069-2
[15] M. Petkovšek, Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symb. Comput. 14, 243-264 (1992) · Zbl 0761.11008 · doi:10.1016/0747-7171(92)90038-6
[16] M.S. Robertson, Complex powers of p-valent functions and subordination, in Complex Analysis, Proceedings of SUNY Conference, Brockport 1976. Lecture Notes in Mathematics, vol. 36 (1978), pp. 1-33 · Zbl 0394.30007
[17] M.S. Robertson, A subordination problem and a related class of polynomials, in Univalent Functions, Fractional Calculus, and Their Applications, ed. by H.M. Srivastava, Sh. Owa (eds.) (Ellis Horwood Limited, Chichester, 1989), pp. 245-266 · Zbl 0691.30016
[18] B. Salvy, P. Zimmermann, GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw. 20, 163-177 (1994) · Zbl 0888.65010 · doi:10.1145/178365.178368
[19] R.P. Stanley, Differentiably finite power series. Eur. J. Comb. 1, 175-188 (1980) · Zbl 0445.05012 · doi:10.1016/S0195-6698(80)80051-5
[20] M. van Hoeij, Finite singularities and hypergeometric solutions of linear recurrence equations. J. Pure Appl. Algebra 139, 109-131 (1998) · Zbl 0933.39041 · doi:10.1016/S0022-4049(99)00008-0
[21] D. · Zbl 0701.05001 · doi:10.1016/0012-365X(90)90120-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.