×

Exceptional orthogonal polynomials and rational solutions to Painlevé equations. (English) Zbl 1443.33014

Foupouagnigni, Mama (ed.) et al., Orthogonal polynomials. Proceedings of the 2nd AIMS-Volkswagen Stiftung workshop on introduction to orthogonal polynomials and applications, Douala, Cameroon, October 5–12, 2018. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 335-386 (2020).
Summary: These are the lecture notes for a course on exceptional polynomials taught at the AIMS-Volkswagen Stiftung Workshop on Introduction to Orthogonal Polynomials and Applications that took place in Douala (Cameroon) from October 5–12, 2018. They summarize the basic results and construction of exceptional poynomials, developed over the past 10 years. In addition, some new results are presented on the construction of rational solutions to Painlevé equation \(\mathrm{P}_{\mathrm{IV}}\) and its higher order generalizations that belong to the \(A_{2n}^{(1)}\)-Painlevé hierarchy. The construction is based on dressing chains of Schrödinger operators with potentials that are rational extensions of the harmonic oscillator. Some of the material presented here (Sturm-Liouville operators, classical orthogonal polynomials, Darboux-Crum transformations, etc.) are classical and can be found in many textbooks, while some results (genus, interlacing and cyclic Maya diagrams) are new and presented for the first time in this set of lecture notes.
For the entire collection see [Zbl 1442.33005].

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies

References:

[1] V. È. Adler, A modification of Crum’s method. Theor. Math. Phys. 101(3), 1381-1386 (1994) · Zbl 0857.34069 · doi:10.1007/BF01035458
[2] V. È. Adler, Nonlinear chains and Painlevé equations. Phys. D 73(4), 335-351 (1994) · Zbl 0812.34030 · doi:10.1016/0167-2789(94)90104-X
[3] G.E. Andrews, The Theory of Partitions (Cambridge University Press, Cambridge, 1998). MR 1634067 · Zbl 0996.11002
[4] G.E. Andrews, K. Eriksson, Integer Partitions (Cambridge University Press, Cambridge, 2004). MR 2122332 · Zbl 1073.11063
[5] D. Bermúdez, Complex SUSY transformations and the Painlevé IV equation. SIGMA 8, 069 (2012) · Zbl 1269.81055
[6] D. Bermúdez, D.J. Fernández, Complex solutions to the Painlevé IV equation through supersymmetric quantum mechanics, in AIP Conference Proceedings, vol. 1420 (AIP, College Park, 2012), pp. 47-51
[7] N. Bonneux, A.B.J. Kuijlaars, Exceptional Laguerre polynomials. Stud. Appl. Math. (2018). https://doi.org/10.1111/sapm.12204 · Zbl 1408.33019 · doi:10.1111/sapm.12204
[8] P.A. Clarkson, Painlevé equations – nonlinear special functions. J. Comput. Appl. Math. 153(1-2), 127-140 (2003) · Zbl 1035.34101 · doi:10.1016/S0377-0427(02)00589-7
[9] P.A. Clarkson, The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44(11), 5350-5374 (2003) · Zbl 1063.33029 · doi:10.1063/1.1603958
[10] P.A. Clarkson, D. Gómez-Ullate, Y. Grandati, R. Milson, Rational solutions of higher order Painlevé systems I (2018). Preprint. arXiv: 1811.09274 · Zbl 1441.81084
[11] S.Yu. Dubov, V.M. Eleonskii, N.E. Kulagin, Equidistant spectra of anharmonic oscillators. Chaos 4(1), 47-53 (1994) · Zbl 1055.81529 · doi:10.1063/1.166056
[12] A.J. Durán, Exceptional Meixner and Laguerre orthogonal polynomials. J. Approx. Theory 184, 176-208 (2014) · Zbl 1295.33013 · doi:10.1016/j.jat.2014.05.009
[13] A.J. Durán, Exceptional Charlier and Hermite orthogonal polynomials. J. Approx. Theory 182, 29-58 (2014) · Zbl 1298.33016 · doi:10.1016/j.jat.2014.03.004
[14] A.J. Durán, Higher order recurrence relation for exceptional Charlier, Meixner, Hermite and Laguerre orthogonal polynomials. Integral Transforms Spec. Funct. 26(5), 357-376 (2015) · Zbl 1314.42027 · doi:10.1080/10652469.2015.1009455
[15] A.J. Durán, Exceptional Hahn and Jacobi orthogonal polynomials. J. Approx. Theory 214, 9-48 (2017) · Zbl 1356.42018 · doi:10.1016/j.jat.2016.11.003
[16] A.J. Durán, M. Pérez, Admissibility condition for exceptional Laguerre polynomials. J. Math. Anal. Appl. 424(2), 1042-1053 (2015) · Zbl 1305.33019 · doi:10.1016/j.jmaa.2014.11.035
[17] G. Filipuk, P.A. Clarkson, The symmetric fourth Painlevé hierarchy and associated special polynomials. Stud. Appl. Math. 121(2), 157-188 (2008) · Zbl 1202.34155 · doi:10.1111/j.1467-9590.2008.00410.x
[18] P.J. Forrester, N.S. Witte, Application of the τ-function theory of Painlevé equations to random matrices: PIV, PII and the GUE. Commun. Math. Phys. 219(2), 357-398 (2001). MR 1833807 · Zbl 1042.82019
[19] M. García-Ferrero, D. Gómez-Ullate, Oscillation theorems for the Wronskian of an arbitrary sequence of eigenfunctions of Schrödinger’s equation. Lett. Math. Phys. 105(4), 551-573 (2015) · Zbl 1328.34030 · doi:10.1007/s11005-015-0751-4
[20] M. García-Ferrero, D. Gómez-Ullate, R. Milson, A Bochner type characterization theorem for exceptional orthogonal polynomials. J. Math. Anal. Appl. 472, 584-626 (2019) · Zbl 1421.42014 · doi:10.1016/j.jmaa.2018.11.042
[21] D. Gómez-Ullate, N. Kamran, R. Milson, Supersymmetry and algebraic Darboux transformations. J. Phys. A 37(43), 10065 (2004) · Zbl 1064.81052
[22] D. Gómez-Ullate, N. Kamran, R. Milson, The Darboux transformation and algebraic deformations of shape-invariant potentials. J. Phys. A 37(5), 1789 (2004) · Zbl 1065.81126
[23] D. Gómez-Ullate, N. Kamran, R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem. J. Math. Anal. Appl. 359(1), 352-367 (2009) · Zbl 1183.34033 · doi:10.1016/j.jmaa.2009.05.052
[24] D. Gómez-Ullate, N. Kamran, R. Milson, An extension of Bochner’s problem: exceptional invariant subspaces. J. Approx. Theory 162(5), 987-1006 (2010) · Zbl 1214.34079 · doi:10.1016/j.jat.2009.11.002
[25] D. Gómez-Ullate, N. Kamran, R. Milson, Two-step Darboux transformations and exceptional Laguerre polynomials. J. Math. Anal. Appl. 387(1), 410-418 (2012) · Zbl 1232.33013 · doi:10.1016/j.jmaa.2011.09.014
[26] D. Gómez-Ullate, Y. Grandati, R. Milson, Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A 47(1), 015203 (2013) · Zbl 1283.81059
[27] D. Gómez-Ullate, N. Kamran, R. Milson, A conjecture on exceptional orthogonal polynomials. Found. Comput. Math. 13(4), 615-666 (2013) · Zbl 1282.33019 · doi:10.1007/s10208-012-9128-6
[28] D. Gómez-Ullate, Y. Grandati, R. Milson, Shape invariance and equivalence relations for pseudo-Wronskians of Laguerre and Jacobi polynomials. J. Phys. A 51(34), 345201 (2018) · Zbl 1400.33017
[29] D. Gómez-Ullate, Y. Grandati, R. Milson, Durfee rectangles and pseudo-Wronskian equivalences for Hermite polynomials. Stud. Appl. Math. 141(4), 596-625 (2018) · Zbl 1408.33021 · doi:10.1111/sapm.12225
[30] D. Gómez-Ullate, Y. Grandati, S. Lombardo, R. Milson, Rational solutions of dressing chains and higher order Painleve equations (2018). Preprint. arXiv:1811.10186 · Zbl 1400.33017
[31] Y. Grandati, Solvable rational extensions of the isotonic oscillator. Ann. Phys. 326(8), 2074-2090 (2011) · Zbl 1220.81089 · doi:10.1016/j.aop.2011.03.001
[32] Y. Grandati, Multistep DBT and regular rational extensions of the isotonic oscillator. Ann. Phys. 327(10), 2411-2431 (2012) · Zbl 1255.81169 · doi:10.1016/j.aop.2012.07.004
[33] V.I. Gromak, I. Laine, S. Shimomura, Painlevé Differential Equations in the Complex Plane, vol. 28 (Walter de Gruyter, Berlin, 2008) · Zbl 1043.34100
[34] K. Kajiwara, Y. Ohta, Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37(9), 4693-4704 (1996) · Zbl 0865.34010 · doi:10.1063/1.531648
[35] K. Kajiwara, Y. Ohta, Determinant structure of the rational solutions for the Painlevé IV equation. J. Phys. A 31(10), 2431 (1998) · Zbl 0919.34008
[36] M.G. Krein, On a continual analogue of a Christoffel formula from the theory of orthogonal polynomials. Dokl. Akad. Nauk SSSR (N.S.) 113, 970-973 (1957). MR 0091396 · Zbl 0151.11202
[37] A.B.J. Kuijlaars, R. Milson, Zeros of exceptional Hermite polynomials. J. Approx. Theory 200, 28-39 (2015) · Zbl 1331.33024 · doi:10.1016/j.jat.2015.07.002
[38] I. Marquette, C. Quesne, New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems. J. Math. Phys. 54(10), 12 pp., 102102 (2013). MR 3134580 · Zbl 1284.81147
[39] I. Marquette, C. Quesne, Two-step rational extensions of the harmonic oscillator: exceptional orthogonal polynomials and ladder operators. J. Phys. A 46(15), 155201 (2013) · Zbl 1267.81174
[40] I. Marquette, C. Quesne, Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial. J. Math. Phys. 57(5), 15, 052101 (2016). MR 3501792 · Zbl 1375.81100
[41] D. Masoero, P. Roffelsen, Poles of Painlevé IV rationals and their distribution. SIGMA 14 (2018), 49, Paper No. 002. MR 3742702 · Zbl 1393.34082
[42] T. Masuda, Y. Ohta, K. Kajiwara, A determinant formula for a class of rational solutions of Painlevé V equation. Nagoya Math. J. 168, 1-25 (2002) · Zbl 1052.34085 · doi:10.1017/S0027763000008321
[43] J. Mateo, J. Negro, Third-order differential ladder operators and supersymmetric quantum mechanics. J. Phys. A 41(4), 28, 045204 (2008). MR 2451071 · Zbl 1134.81375
[44] K. Matsuda, Rational solutions of the Noumi and Yamada system of type \(A_4^{(1)}\). J. Math. Phys. 53(2), 023504 (2012) · Zbl 1274.37038
[45] Monty Python, And now for something completely different. https://www.imdb.com/title/tt0066765/
[46] M. Noumi, Painlevé Equations through Symmetry, vol. 223 (Springer Science & Business, New York, 2004) · Zbl 1077.34003 · doi:10.1090/mmono/223
[47] M. Noumi, Y. Yamada, Symmetries in the fourth Painlevé equation and Okamoto polynomials. Nagoya Math. J. 153, 53-86 (1999) · Zbl 0932.34088 · doi:10.1017/S0027763000006899
[48] A.A. Oblomkov, Monodromy-free Schrödinger operators with quadratically increasing potentials. Theor. Math. Phys. 121(3), 1574-1584 (1999) · Zbl 0978.34077 · doi:10.1007/BF02557204
[49] S. Odake, R. Sasaki, Infinitely many shape invariant potentials and new orthogonal polynomials. Phys. Lett. B 679(4), 414-417 (2009) · doi:10.1016/j.physletb.2009.08.004
[50] S. Odake, R. Sasaki, Another set of infinitely many exceptional X_ℓ Laguerre polynomials. Phys. Lett. B 684, 173-176 (2010) · doi:10.1016/j.physletb.2009.12.062
[51] S. Odake, R. Sasaki, Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials. Phys. Lett. B 702(2-3), 164-170 (2011) · doi:10.1016/j.physletb.2011.06.075
[52] S. Odake, R. Sasaki, Extensions of solvable potentials with finitely many discrete eigenstates. J. Phys. A 46(23), 235205 (2013) · Zbl 1269.81042
[53] S. Odake, R. Sasaki, Krein-Adler transformations for shape-invariant potentials and pseudo virtual states. J. Phys. A 46(24), 245201 (2013) · Zbl 1269.81043
[54] K. Okamoto, Studies on the Painlevé equations. III. Second and fourth Painlevé equations, P_II and P_IV. Math. Ann. 275(2), 221-255 (1986). MR 854008 · Zbl 0589.58008
[55] J.B. Olsson, Combinatorics and Representations of Finite Groups. Fachbereich Mathematik [Lecture Notes in Mathematics], vol. 20 (Universität Essen, Essen, 1994)
[56] C. Quesne, Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry. J. Phys. A Math. Theor. 41(39), 392001 (2008) · Zbl 1192.81174
[57] A. Sen, A.N.W. Hone, P.A. Clarkson, Darboux transformations and the symmetric fourth Painlevé equation. J. Phys. A 38(45), 9751-9764 (2005) · Zbl 1102.34071 · doi:10.1088/0305-4470/38/45/003
[58] K. Takasaki, Spectral curve, Darboux coordinates and Hamiltonian structure of periodic dressing chains. Commun. Math. Phys. 241(1), 111-142 (2003) · Zbl 1149.81312
[59] T. Tsuda, Universal characters, integrable chains and the Painlevé equations. Adv. Math. 197(2), 587-606 (2005) · Zbl 1095.34057 · doi:10.1016/j.aim.2004.10.016
[60] H. Umemura, Painlevé equations in the past 100 years. Am. Math. Soc. Transl. 204, 81-110 (2001)
[61] W. Van Assche, Orthogonal Polynomials and Painlevé Equations. Australian Mathematical Society Lecture Series, vol. 27 (Cambridge University Press, Cambridge, 2018). MR 3729446 · Zbl 1387.33001
[62] A.P. Veselov, A.B. Shabat, Dressing chains and the spectral theory of the Schrödinger operator. Funct. Anal. Appl. 27(2), 81-96 (1993) · Zbl 0813.35099 · doi:10.1007/BF01085979
[63] R.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.