×

Population genetics of tumor suppressor genes. (English) Zbl 1442.92103

Summary: Cancer emerges when a single cell receives multiple mutations. For example, the inactivation of both alleles of a tumor suppressor gene (TSG) can imply a net reproductive advantage of the cell and might lead to clonal expansion. In this paper, we calculate the probability as a function of time that a population of cells has generated at least one cell with two inactivated alleles of a TSG. Different kinetic laws hold for small and large populations. The inactivation of the first allele can either be neutral or lead to a selective advantage or disadvantage. The inactivation of the first and of the second allele can occur at equal or different rates. Our calculations provide insights into basic aspects of population genetics determining cancer initiation and progression.

MSC:

92D10 Genetics and epigenetics
92C32 Pathology, pathophysiology
Full Text: DOI

References:

[1] Anderson, A. R.; Chaplain, M. A., Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60, 857-899 (1998) · Zbl 0923.92011
[2] Armitage, P.; Doll, R., The age distribution of cancer and a multi-stage theory of carcinogenesis, Br. J. Cancer, 8, 1-12 (1954)
[3] Armitage, P.; Doll, R., A two-stage theory of carcinogenesis in relation to the age distribution of human cancer, Br. J. Cancer, 11, 161-169 (1957)
[4] Bishop, J. M., Cellular oncogenes and retroviruses, Annu. Rev. Biochem., 52, 301-354 (1983)
[5] Chang, S.; Khoo, C.; DePinho, R. A., Modeling chromosomal instability and epithelial carcinogenesis in the telomerase-deficient mouse, Semin. Cancer. Biol., 11, 227-239 (2001)
[6] Chang, S.; Khoo, C.; Naylor, M. L.; Maser, R. S.; DePinho, R. A., Telomere-based crisisfunctional differences between telomerase activation and ALT in tumor progression, Genes Dev, 17, 88-100 (2003)
[7] Fisher, J. C., Multiple-mutation theory of carcinogenesis, Nature, 181, 651-652 (1958)
[8] Frank, S. A., Age-specific acceleration of cancer, Curr. Biol., 14, 242-246 (2004)
[9] Friend, S. H.; Bernards, R.; Rogeli, S.; Weinberg, R. A.; Rapaport, J. M.; Albert, D. M.; Dryja, T. P., A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma, Nature, 323, 643-646 (1986)
[10] Gatenby, R. A.; Vincent, T. L., An evolutionary model of carcinogenesis, Cancer Res, 63, 6212-6220 (2003)
[11] Goldie, J. H.; Coldman, A. J., A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate, Cancer Treat. Rep., 63, 1727-1733 (1979)
[12] Goldie, J. H.; Coldman, A. J., Quantitative model for multiple levels of drug resistance in clinical tumors, Cancer Treat. Rep., 67, 923-931 (1983)
[13] Grist, S. A.; McCarron, M.; Kutlaca, A.; Turner, D. R.; Morley, A. A., In vivo human somatic mutationfrequency and spectrum with age, Mutat. Res., 266, 189-196 (1992)
[14] Iwasa, Y.; Michor, F.; Nowak, M. A., Stochastic tunnels in evolutionary dynamics, Genetics, 166, 1571-1579 (2004)
[15] Kinzler, K. W.; Nilbert, M. C.; Vogelstein, B.; Bryan, T. M.; Levy, D. B.; Smith, K. J.; Preisinger, A. C.; Hamilton, S. R.; Hedge, P.; Markham, A.; Carlson, M.; Joslyn, G.; Groden, J.; White, R.; Miki, Y.; Miyoshi, Y.; Nishisho, I.; Nakamura, Y., Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers, Science, 251, 1366-1370 (1991)
[16] Knudson, A. G., Mutation and cancerstatistical study of retinoblastoma, Proc. Natl. Acad. Sci. U S A, 68, 820-823 (1971)
[17] Knudson, A. G., Antioncogenes and human cancer, Proc. Natl Acad. Sci. USA, 90, 10914-10921 (1993)
[18] Komarova, N. L.; Wodarz, D., Evolutionary dynamics of mutator phenotypes in cancerimplications for chemotherapy, Cancer Res, 63, 6635-6642 (2003)
[19] Komarova, N. L.; Wodarz, D., The optimal rate of chromosome loss for the inactivation of tumor suppressor genes in cancer, Proc. Natl. Acad. Sci. USA, 101, 7017-7021 (2004)
[20] Komarova, N. L.; Sengupta, A.; Nowak, M. A., Mutation-selection networks of cancer initiationtumor suppressor genes and chromosomal instability, J. Theor. Biol., 223, 433-450 (2003) · Zbl 1464.92067
[21] Lengauer, C.; Kinzler, K. W.; Vogelstein, B., Genetic instabilities in human cancers, Nature, 396, 623-649 (1998)
[22] Levine, A. J., The tumor suppressor genes, Annu. Rev. Biochem., 62, 623-651 (1993)
[23] Luebeck, E. G.; Moolgavkar, S. H., Multistage carcinogenesis and the incidence of colorectal cancer, Proc. Natl Acad. Sci. USA, 99, 15095-15100 (2002)
[24] Maser, R. S.; DePinho, R. A., Connecting chromosomes, crisis, and cancer, Science, 297, 565-569 (2002)
[25] Michor, F.; Iwasa, Y.; Komarova, N. L.; Nowak, M. A., Local regulation of homeostasis favors chromosomal instability, Curr. Biol., 13, 581-584 (2003)
[26] Michor, F.; Iwasa, Y.; Rajagopalan, H.; Lengauer, C.; Nowak, M. A., Linear model of colon cancer initiation, Cell Cycle, 3, 358-362 (2004)
[27] Michor, F.; Iwasa, Y.; Nowak, M. A., Dynamics of cancer progression, Nature Rev. Cancer, 4, 197-206 (2004)
[28] Moolgavkar, S. H.; Knudson, A. G., Mutation and cancera model for human carcinogenesis, J. Natl Cancer Inst., 66, 1037-1052 (1981)
[29] Moran, P., 1962. The statistical processes of evolutionary theory (Clarendon Press). · Zbl 0119.35901
[30] Nordling, C. O., A new theory on cancer-inducing mechanism, Br. J. Cancer, 7, 68-72 (1953)
[31] Nowak, M. A.; Komarova, N. L.; Sengupta, A.; Jallepalli, P. V.; Shih, I.-M.; Vogelstein, B.; Lengauer, C., The role of chromosomal instability in tumor initiation, Proc. Natl Acad. Sci. USA, 99, 16226-16231 (2002)
[32] Nowak, M. A.; Michor, F.; Komarova, N. L.; Iwasa, Y., Evolutionary dynamics of tumor suppressor gene inactivation, Proc. Natl Acad. Sci. USA, 101, 10635-10638 (2004)
[33] Nunney, L., Lineage selection and the evolution of multistage carcinogenesis, Proc. R. Soc. London B, 266, 493-498 (1999)
[34] Otsuka, K.; Suzuki, T.; Shibata, H.; Kato, S.; Sakayori, M.; Shimodaira, H.; Kanamaru, R.; Ishioka, C., Analysis of the human APC mutation spectrum in a Saccharomyces cerevisiae strain with a mismatch repair defect, Int. J. Cancer, 103, 624-630 (2003)
[35] Owen, M. R.; Sherratt, J. A., Mathematical modelling of macrophage dynamics in tumours, Math. Models Methods Appl. Sci., 9, 513-539 (1999) · Zbl 0932.92019
[36] Rajagopalan, H.; Nowak, M. A.; Vogelstein, B.; Lengauer, C., The significance of unstable chromosomes in colorectal cancer, Nature Rev. Cancer, 3, 695-701 (2003)
[37] Strauss, B. S., Hypermutability in carcinogenesis, Genetics, 148, 1619-1626 (1998)
[38] Taddei, F.; Radman, M.; Maynard-Smith, J.; Toupance, B.; Gouyon, P. H.; Godelle, B., Role of mutator alleles in adaptive evolution, Nature, 387, 700-702 (1997)
[39] Tomlinson, I.; Sasieni, P.; Bodmer, W., How many mutations in a cancer? Am, J. Pathol., 160, 755-758 (2002)
[40] Vogelstein, B.; Kinzler, K. W., The genetic basis of human cancer (2001), McGraw-Hill: McGraw-Hill Toronto
[41] Weinberg, R. A., Tumor suppressor genes, Science, 254, 1138-1146 (1991)
[42] Wodarz, D.; Krakauer, D. C., Genetic instability and the evolution of angiogenic tumor cell lines, Oncol. Rep., 8, 1195-1201 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.