×

A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice. (English) Zbl 1442.90130

Summary: Maximizing non-monotone submodular functions is one of the most important problems in submodular optimization. Let \(\mathbf{B}=(B_1, B_2,\ldots, B_n)\in{\mathbb{Z}}_+^n\) be an integer vector and \([\mathbf{ B}]=\{(x_1,\dots ,x_n) \in{\mathbb{Z}}_+^n: 0\le x_k \le B_k, \forall 1\le k\le n\}\) be the set of all non-negative integer vectors not greater than \(\mathbf{B}\). A function \(f:[\mathbf{ B}] \rightarrow{\mathbb{R}}\) is said to be weak-submodular if \(f(\mathbf{x}+\delta \mathbf{1}_k)-f(\mathbf{x})\ge f(\mathbf{y}+\delta \mathbf{1}_k)-f(\mathbf{y})\) for any \(k\in \{1,\dots ,n\}\), any pair of \(\mathbf{x}, \mathbf{y}\in [\mathbf{ B}]\) such that \(\mathbf{x}\le \mathbf{y}\) and \(x_k =y_k\), and any \(\delta \in{\mathbb{Z}}_+\) satisfying \(\mathbf{y}+\delta \mathbf{1}_k\in [\mathbf{ B}]\). Here \(\mathbf{1}_k\) is the vector with the \(k\) th component equal to 1 and each of the others equals to 0. In this paper we consider the problem of maximizing a non-monotone and non-negative weak-submodular function on the bounded integer lattice without any constraint. We present an randomized algorithm with an approximation guarantee \(\frac{1}{2}\) for the problem.

MSC:

90C10 Integer programming
Full Text: DOI

References:

[1] Ahmed, S.; Atamtürk, A., Maximizing a class of submodular utility functions, Math Program, 128, 1-2, 149-169 (2011) · Zbl 1218.90221 · doi:10.1007/s10107-009-0298-1
[2] Bach, F., Submodular functions: from discrete to continuous domains, Math Program, 175, 1-2, 419-459 (2019) · Zbl 1423.90174 · doi:10.1007/s10107-018-1248-6
[3] Bian A, Mirzasoleiman B, Buhmann J, Krause A (2017) Guaranteed nonconvex optimization: Submodular maximization over continuous domains. In: Proceedings of the 20th international conference on artificial intelligence and statistics. JMLR. Fort Lauderdale, Florida, USA, pp 111-120
[4] Buchbinder N, Feldman M (2018) Deterministic algorithms for submodular maximization problems. ACM Trans Algorithms 14(3): Article 32 · Zbl 1454.68170
[5] Buchbinder N, Feldman M, Naor J-S, Schwartz R (2014) Submodular maximization with cardinality constraints. In: Proceedings of the 25th annual ACM-SIAM symposium on discrete algorithms. SODA. Oregon, Portland, pp 1433-1452 · Zbl 1423.90212
[6] Buchbinder, N.; Feldman, M.; Seffi, J.; Schwartz, R., A tight linear time (1/2)-approximation for unconstrained submodular maximization, SIAM J Comput, 44, 5, 1384-1402 (2015) · Zbl 1330.68346 · doi:10.1137/130929205
[7] Ene A, Nguy \(\tilde{\hat{\text{e}}}\) n H-L, (2016) Constrained submodular maximization: beyond \(1/e\). In: 2016 IEEE 57th annual symposium on foundations of computer science. FOCS. New Brunswick, NJ, USA, pp 248-258
[8] Ene A, Nguy \(\tilde{\hat{\text{e}}}\) n H-L, Vladu A (2018) A parallel double greedy algorithm for submodular maximization, arXiv:1812.01591
[9] Feige, U.; Mirrokni, V-S; Vondrák, J., Maximizing non-monotone submodular functions, SIAM J Comput, 40, 4, 1133-1153 (2011) · Zbl 1230.90198 · doi:10.1137/090779346
[10] Feldman M, Naor J, Schwartz R (2011) A unified continuous greedy algorithm for submodular maximization. In: 2011 IEEE 52nd annual symposium on foundations of computer science. FOCS. Palm Springs, CA, USA, pp 570-579 · Zbl 1292.90248
[11] Gharan S-O, Vondrák J (2011) Submodular maximization by simulated annealing. In: Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics. San Francisco, California, USA, pp 1098-1117 · Zbl 1377.90073
[12] Gottschalk C, Peis B (2015) Submodular function maximization on the bounded integer lattice. In: Sanitá L, Skutella M (eds) WAOA 2015, vol 9499. LNCS, Springer, Cham, pp 133-144 · Zbl 1479.90174
[13] Hartline J, Mirrokni V, Sundararajan M (2008) Optimal marketing strategies over social networks. In: Proceedings of the 17th international conference on World Wide Web. ACM, Beijing, China, pp 189-198
[14] Kapralov M, Post I, Vondrák J (2013) Online submodular welfare maximization: greedy is optimal. In: Proceedings of the 24th annual ACM-SIAM symposium on discrete algorithms. SIAM. New Orleans, Louisiana, USA, pp 1216-1225 · Zbl 1425.91198
[15] Niazadeh R, Roughgarden T (2018) Optimal algorithms for continuous non-monotone submodular and DR-submodular maximization. In: the 32nd conference on neural information processing systems. NIPS. Montréal, Canada, pp 9617-9627
[16] Soma T, Yoshida Y (2015) A generalization of submodular cover via the diminishing return property on the integer lattice. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems 28. Curran Associates, Inc., pp 847-855
[17] Soma T, Yoshida Y (2017) Non-monotone dr-submodular function maximization. In: Proceedings of the 31st AAAI conference on artificial intelligence. AAAI. San Francisco, California, USA, pp 898-904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.