×

Isogeometric boundary element methods and patch tests for linear elastic problems: formulation, numerical integration, and applications. (English) Zbl 1442.65418

Summary: An Isogeometric Boundary Element Method for solving three-dimensional boundary-value problems of classical linear elasticity theory is proposed. The method is developed as a generalization of the author’s earlier work on Laplace’s equation to Navier’s equations. As a result, the proposed method features (i) proper basis functions for approximating Dirichlet and Neumann data, (ii) high-order collocation schemes for weakly singular, singular, and hyper-singular integral operators, (iii) state-of-the-art numerical integration schemes capable of handling geometries with disparate dimensions, (iv) well-conditioned linear algebraic systems, with the condition number independent of the mesh size. Boundary Element Patch Tests, as extensions of concepts widely used for finite element methods, are also introduced. It is shown how these tests can be used to assess the veracity of boundary element formulations and numerical integration schemes, implementations, and geometric precision of Computer Aided Design models. The method is applied to two challenging case studies, representative of industrial applications.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Aimi, A.; Diligenti, M.; Sampoli, M. L.; Sestini, A., Isogemetric analysis and symmetric Galerkin BEM: A 2D numerical study, Appl. Math. Comput., 272, 173-186 (2016) · Zbl 1410.65468
[2] Aimi, A.; Diligenti, M.; Sampoli, M. L.; Sestini, A., Non-polynomial spline alternatives in Isogeometric Symmetric Galerkin BEM, Appl. Numer. Math., 116, 10-23 (2017) · Zbl 1372.65316
[3] Nguyen, B. H.; Tran, H. D.; Anitescu, C.; Zhuang, X.; Rabczuk, T., An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems, Comput. Methods Appl. Mech. Engrg., 306, 252-275 (2016) · Zbl 1436.74083
[4] Aimi, A.; Calabr, F.; Diligenti, M.; Sampoli, M.; Sangalli, G.; Sestini, A., Efficient assembly based on B-spline tailored quadrature rules for the iga-SGBEM, Comput. Methods Appl. Mech. Engrg., 331, 327-342 (2018) · Zbl 1439.65207
[5] Feischl, M.; Gantner, G.; Praetorius, D., Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations, Comput. Methods Appl. Mech. Engrg., 290, 362-386 (2015) · Zbl 1425.65200
[6] Feischl, M.; Gantner, G.; Haberl, A.; Praetorius, D., Adaptive 2D IGA boundary element methods, Eng. Anal. Bound. Elem., 62, 141-153 (2016) · Zbl 1403.65267
[7] Feischl, M.; Gantner, G.; Haberl, A.; Praetorius, D., Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations, Numer. Math., 136, 1, 147-182 (2017) · Zbl 1362.65131
[8] Nguyen, B. H.; Zhuang, X.; Wriggers, P.; Rabczuk, T.; Mear, M. E.; Tran, H. D., Isogeometric symmetric Galerkin boundary element method for three-dimensional elasticity problems, Comput. Methods Appl. Mech. Engrg., 323, 132-150 (2017) · Zbl 1439.74451
[9] Gu, J.; Zhang, J.; Li, G., Isogeometric analysis in BIE for 3-D potential problem, Eng. Anal. Bound. Elem., 36, 5, 858-865 (2012) · Zbl 1352.65585
[10] Taus, M.; Rodin, G. J.; Hughes, T. J.R., Isogeometric analysis of boundary integral equations: High-order collocation methods for the singular and hyper-singular equations, Math. Models Methods Appl. Sci., 26, 08, 1447-1480 (2016) · Zbl 1343.65143
[11] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg., 209-212, 87-100 (2012) · Zbl 1243.74193
[12] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221 (2013) · Zbl 1297.74156
[13] Wang, Y.; Benson, D. J.; Nagy, A. P., A multi-patch nonsingular isogeometric boundary element method using trimmed elements, Comput. Mech., 56, 1, 173-191 (2015) · Zbl 1329.65281
[14] Beer, G.; Marussig, B.; Zechner, J., A simple approach to the numerical simulation with trimmed cad surfaces, Comput. Methods Appl. Mech. Engrg., 285, 776-790 (2015) · Zbl 1425.65029
[15] Simpson, R. N.; Scott, M. A.; Taus, M.; Thomas, D. C.; Lian, H., Acoustic isogeometric boundary element analysis, Comput. Methods Appl. Mech. Engrg., 269, 265-290 (2014) · Zbl 1296.65175
[16] Peake, M. J.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Comput. Methods Appl. Mech. Engrg., 284, 762-780 (2015), Isogeometric Analysis Special Issue · Zbl 1425.65202
[17] Coox, L.; Atak, O.; Vandepitte, D.; Desmet, W., An isogeometric indirect boundary element method for solving acoustic problems in open-boundary domains, Comput. Methods Appl. Mech. Engrg., 316, 186-208 (2017), Special Issue on Isogeometric Analysis: Progress and Challenges · Zbl 1439.76116
[18] Belibassakis, K. A.; Gerostathis, T. P.; Kostas, K. V.; Politis, C. G.; Kaklis, P. D.; Ginnis, A. I.; Feurer, C., A BEM-isogeometric method for the ship wave-resistance problem, Ocean Eng., 60, 53-67 (2013)
[19] Ginnis, A. I.; Kostas, K. V.; Politis, C. G.; Kaklis, P. D.; Belibassakis, K. A.; Gerostathis, T. P.; Scott, M. A.; Hughes, T. J.R., Isogeometric boundary-element analysis for the wave-resistance problem using T-splines, Comput. Methods Appl. Mech. Engrg., 279, 425-439 (2014) · Zbl 1423.74270
[20] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S. P.A., Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput. Methods Appl. Mech. Engrg., 316, 151-185 (2017) · Zbl 1439.74370
[21] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput. Aided Des., 43, 11, 1427-1437 (2011), Solid and Physical Modeling 2011
[22] Sun, S. H.; Yu, T. T.; Nguyen, T. T.; Atroshchenko, E.; Bui, T. Q., Structural shape optimization by IGABEM and particle swarm optimization algorithm, Eng. Anal. Bound. Elem., 88, 26-40 (2018) · Zbl 1403.74234
[23] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-NURCCs, ACM Trans. Graph., 22, 3, 477-484 (2003)
[25] Scott, M. A.; Li, X.; Sederberg, T. W.; Hughes, T. J.R., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213, 206-222 (2012) · Zbl 1243.65030
[26] Borden, M. J.; Scott, M. A.; Evans, J. A.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of NURBS, Internat. J. Numer. Methods Engrg., 87, 1-5, 15-47 (2011) · Zbl 1242.74097
[27] Scott, M. A.; Borden, M. J.; Verhoosel, C. V.; Sederberg, T. W.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of T-splines, Internat. J. Numer. Methods Engrg., 88, 2, 126-156 (2011) · Zbl 1242.65243
[28] Piegl, L.; Tiller, W., (The NURBS Book. The NURBS Book, Monographs in Visual Communication (1997))
[29] Rogers, D. F., An Introduction to NURBS with Historical Perspective (2000), Elsevier
[30] Costabel, M., Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal., 19, 3, 613-626 (1988) · Zbl 0644.35037
[31] Rodin, G.; Steinbach, O., Boundary element preconditioners for problems defined on slender domains, SIAM J. Sci. Comput., 24, 4, 1450-1464 (2003) · Zbl 1040.31001
[32] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications · Zbl 1191.74002
[33] Irons, B.; Zienkiewicz, O. C.; Cheung, Y. K.; Bazeley, G. P., Triangular elements in plate bending conforming and nonconforming solutions, (Conference of Matrix Methods, Wright-Patterson Air Force Base, Ohio (1965))
[34] Strang, W. G.; Fix, G. J., (An Analysis of the Finite Element Method. An Analysis of the Finite Element Method, Prentice-Hall Series in Automatic Computation (1973), Prentice-Hall) · Zbl 0278.65116
[35] Taylor, R. L.; Simo, J. C.; Zienkiewicz, O. C.; Chan, A. C.H., The patch test—a condition for assessing FEM convergence, Int. J. Numer. Methods Eng., 22, 1, 39-62 (1986) · Zbl 0593.73072
[36] Schwab, C.; Wendland, W. L., On numerical cubatures of singular surface integrals in boundary element methods, Numer. Math., 62, 1, 343-369 (1992) · Zbl 0761.65012
[37] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. Lond. A, 241, 1226, 376-396 (1957) · Zbl 0079.39606
[38] Schillinger, D.; Dede, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of nurbs, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249-252, 116-150 (2012) · Zbl 1348.65055
[39] Mogilevskaya, S. G.; Nikolskiy, D. V., The use of complex integral representations for analytical evaluation of three-dimensional BEM integrals - potential and elasticity problems, Q. J. Mech. Appl. Math., 67, 3, 505-523 (2014) · Zbl 1302.74185
[40] Rokhlin, V., Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, 2, 187-207 (1985) · Zbl 0629.65122
[41] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 2, 325-348 (1987) · Zbl 0629.65005
[42] Nishimura, N., Fast multipole accelerated boundary integral equation methods, Appl. Mech. Rev., 55, 4, 299-324 (2002)
[43] Fu, Y.; Klimkowski, K. J.; Rodin, G. J.; Berger, E.; Browne, J. C.; Singer, J. K.; Van De Geijn, R. A.; Vemaganti, K. S., A fast solution method for three-dimensional many-particle problems of linear elasticity, Internat. J. Numer. Methods Engrg., 42, 7, 1215-1229 (1998) · Zbl 0904.73072
[44] D.C. Thomas, L. Engvall, S. Schmidt, K. Tew, M.A. Scott, U-splines: splines over unstructured meshes. preprint, available from https://coreform.com/usplines; D.C. Thomas, L. Engvall, S. Schmidt, K. Tew, M.A. Scott, U-splines: splines over unstructured meshes. preprint, available from https://coreform.com/usplines · Zbl 1507.65059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.