×

Electromagnetic modeling of high magnetic contrast media using Calderón preconditioning. (English) Zbl 1442.65414

Summary: In this contribution, we present a Calderón preconditioner for a novel single-source equation to efficiently model electromagnetic scattering problems involving high magnetic contrasts. Through analysis of the spectral properties of the system matrix after discretization, it is shown that this formulation does not break down when high permeabilities are present, which was an unresolved problem of the Calderón preconditioned Poggio-Miller-Chan-Harrington-Wu-Tsai method. The adopted discretization scheme, which involves Rao-Wilton-Glisson and Buffa-Christiansen basis functions, allows for an easy integration in existing commercial Method of Moments software. The efficiency and accuracy of the presented method is corroborated by numerical examples.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
78A30 Electro- and magnetostatics
78A45 Diffraction, scattering

References:

[1] Dobbelaere, D.; De Zutter, D.; Van Hese, J.; Sercu, J.; Boonen, T.; Rogier, H., A Calderón multiplicative preconditioner for the electromagnetic Poincaré-Steklov operator of a heterogeneous domain with scattering applications, J. Comput. Phys., 303, 355-371 (2015) · Zbl 1349.78063
[2] Poggio, A.; Miller, E., Integral equation solutions of three-dimensional scattering problems, (Computer Techniques for Electromagnetics. Computer Techniques for Electromagnetics, International Series of Monographs in Electrical Engineering (1973), Pergamon), 159-264, (Chapter 4)
[3] Cools, K.; Andriulli, F. P.; Michielssen, E., A Calderón multiplicative preconditioner for the PMCHWT integral equation, IEEE Trans. Antennas and Propagation, 59, 12, 4579-4587 (2011) · Zbl 1369.78170
[4] Steinbach, O.; Wendland, W., The construction of some efficient preconditioners in the boundary element method, Adv. Comput. Math., 9, 1, 191-216 (1998) · Zbl 0922.65076
[5] Christiansen, S. H.; Nédélec, J.-C., A preconditioner for the electric field integral equation based on Calderón formulas, SIAM J. Numer. Anal., 40, 3, 1100-1135 (2002) · Zbl 1021.78010
[6] Andriulli, F. P.; Cools, K.; Bağci, H.; Olyslager, F.; Buffa, A.; Christiansen, S.; Michielssen, E., A multiplicative Calderón preconditioner for the electric field integral equation, IEEE Trans. Antennas and Propagation, 56, 8, 2398-2412 (2008) · Zbl 1369.78872
[7] Nédélec, J.-C., (Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Applied Mathematical Sciences (2001), Springer: Springer New York) · Zbl 0981.35002
[8] Buffa, A.; Christiansen, S. H., A dual finite element complex on the barycentric refinement, Math. Comp., 76, 260, 1743-1769 (2007) · Zbl 1130.65108
[9] Rao, S.; Wilton, D.; Glisson, A., Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas and Propagation, 30, 3, 409-418 (1982)
[10] Ylä-Oijala, P.; Taskinen, M., Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects, IEEE Trans. Antennas and Propagation, 53, 10, 3316-3323 (2005) · Zbl 1369.78341
[11] Ylä-Oijala, P.; Kiminki, S. P., Challenges in developing efficient Calderón preconditioners for resonating or high material contrast penetrable objects, Sixth International Conference on Advanced Computational Methods in Engineering, ACOMEN 2014. Sixth International Conference on Advanced Computational Methods in Engineering, ACOMEN 2014, J. Comput. Appl. Math., 289, 296-305 (2015) · Zbl 1327.78023
[12] Bouajaji, M. E.; Antoine, X.; Geuzaine, C., Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell’s equations, J. Comput. Phys., 279, 241-260 (2014) · Zbl 1351.78010
[13] Bouajaji, M. E.; Thierry, B.; Antoine, X.; Geuzaine, C., A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell’s equations, J. Comput. Phys., 294, 38-57 (2015) · Zbl 1349.78066
[14] Boubendir, Y.; Antoine, X.; Geuzaine, C., A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation, J. Comput. Phys., 231, 2, 262-280 (2012) · Zbl 1243.65144
[15] Boubendir, Y.; Domínguez, V.; Levadoux, D.; Turc, C., Regularized combined field integral equations for acoustic transmission problems, SIAM J. Appl. Math., 75, 3, 929-952 (2015) · Zbl 1329.65289
[16] Levadoux, D.; Millot, F.; Pernet, S., A well-conditioned boundary integral equation for transmission problems of electromagnetism, J. Integral Equations Appl., 27, 3, 431-454 (2015) · Zbl 1332.31005
[17] Gossye, M.; Huynen, M.; Vande Ginste, D.; De Zutter, D.; Rogier, H., A Calderón preconditioner for high dielectric contrast media, IEEE Trans. Antennas and Propagation, 66, 2, 808-818 (2018)
[18] Balanis, C., Advanced Engineering Electromagnetics, CourseSmart Series (2012), Wiley
[19] Knockaert, L.; De Zutter, D., On the complex symmetry of the Poincaré-Steklov operator, Prog. Electromagn. Res. B, 7, 145-157 (2008)
[20] (Chew, W.; Michielssen, E.; Song, J. M.; Jin, J. M., Fast and Efficient Algorithms in Computational Electromagnetics (2001), Artech House, Inc.: Artech House, Inc. Norwood, MA, USA)
[21] Adams, R. A.; Fournier, J. J.F., (Sobolev Spaces. Sobolev Spaces, Pure and Applied Mathematics (2003), Elsevier: Elsevier Amsterdam, Boston, Heildelberg) · Zbl 1098.46001
[22] Yan, S.; Jin, J. M.; Nie, Z., Improving the accuracy of the second-kind Fredholm Integral Equations by Using the Buffa-Christiansen Functions, IEEE Trans. Antennas and Propagation, 59, 4, 1299-1310 (2011) · Zbl 1369.78339
[23] Yan, S.; Jin, J. M.; Nie, Z., Accuracy improvement of the second-kind integral equations for generally shaped objects, IEEE Trans. Antennas and Propagation, 61, 2, 788-797 (2013) · Zbl 1370.78376
[24] Cools, K.; Andriulli, F. P.; De Zutter, D.; Michielssen, E., Accurate and conforming mixed discretization of the MFIE, IEEE Antennas Wirel. Propag. Lett., 10, 528-531 (2011)
[25] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[26] Yan, S.; Jin, J. M.; Nie, Z., A comparative study of Calderón preconditioners for PMCHWT equations, IEEE Trans. Antennas and Propagation, 58, 7, 2375-2383 (2010) · Zbl 1369.78338
[27] Stratton, J. A., (Electromagnetic Theory. Electromagnetic Theory, IEEE Press series on Electromagnetic Wave Theory (2007), Wiley-IEEE Press)
[28] Lebedev, V., Quadratures on a sphere, USSR Comput. Math. Math. Phys., 16, 2, 10-24 (1976) · Zbl 0348.65023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.