×

Retrieval of acoustic sources from multi-frequency phaseless data. (English) Zbl 1442.65336

Summary: This paper is concerned with the inverse source problem of reconstructing an unknown acoustic excitation from phaseless measurements of the radiated fields away at multiple frequencies. It is well known that the non-uniqueness issue is a major challenge associated with such an inverse problem. We develop a novel strategy to overcome this challenging problem by recovering the radiated fields via adding some reference point sources as extra artificial sources to the inverse source system. This novel reference source technique requires only a few extra data, and brings in a simple phase retrieval formula. The stability of this phase retrieval approach is rigorously analyzed. After the reacquisition of the phase information, the multi-frequency inverse source problem with recovered phase information is solved by the Fourier method, which is non-iterative, fast and easy to implement. Several numerical examples are presented to demonstrate the feasibility and effectiveness of the proposed method.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35R30 Inverse problems for PDEs

References:

[1] Agaltsov, A.; Novikov, R., Error estimates for phaseless inverse scattering in the Born approximation at high energies, J. Geom. Anal., 1-21, (2017) · Zbl 1447.35127 · doi:10.1007/s12220-017-9872-6
[2] Albanese, R.; Monk, P., The inverse source problem for Maxwell’s equations, Inverse Problems, 22, 1023-1035, (2006) · Zbl 1099.35161 · doi:10.1088/0266-5611/22/3/018
[3] Alzaalig, A.; Hu, G.; Liu, X.; Sun, J., Fast acoustic source imaging using multi-frequency sparse data, (2017)
[4] Ammari, H.; Bao, G.; Fleming, J., An inverse source problem for Maxwell’s equations in magnetoencephalography, SIAM J. Appl. Math., 62, 1369-1382, (2002) · Zbl 1003.35123 · doi:10.1137/S0036139900373927
[5] Anastasio, M. A.; Zhang, J.; Modgil, D.; La Rivière, P. J., Application of inverse source concepts to photoacoustic tomography, Inverse Problems, 23, S21-S35, (2007) · Zbl 1125.92033 · doi:10.1088/0266-5611/23/6/S03
[6] Angel, T.; Kirsch, A.; Kleinmann, R., Antenna control and generalized characteristic modes, Proc. IEEE, 79, 1559-1568, (1991) · doi:10.1109/5.104230
[7] Arridge, S. R., Optical tomography in medical imaging, Inverse Problems, 15, R41-R93, (1999) · Zbl 0926.35155 · doi:10.1088/0266-5611/15/2/022
[8] Bao, G.; Lin, J.; Triki, F., Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data, Contemp. Math. AMS, 548, 45-60, (2011) · Zbl 1229.35319
[9] Bao, G.; Lu, S.; Rundell, W.; Xu, B., A recursive algorithm for multifrequency acoustic inverse source problems, SIAM J. Numer. Anal., 53, 1608-1628, (2015) · Zbl 1321.65166 · doi:10.1137/140993648
[10] Bao, G.; Zhang, L., Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data, Inverse Problems, 32, (2016) · Zbl 1351.65083 · doi:10.1088/0266-5611/32/8/085002
[11] Bleistein, N.; Cohen, J., Nonuniqueness in the inverse source problem in acoustics and electromagnetics, J. Math. Phys., 18, 194-201, (1977) · Zbl 0379.76076 · doi:10.1063/1.523256
[12] Deng, Y.; Liu, H.; Uhlmann, G., On an inverse boundary problem arising in brain imaging, (2017)
[13] Dong, H.; Zhang, D.; Guo, Y., A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data, (2018)
[14] Devaney, A.; Marengo, E.; Li, M., The inverse source problem in nonhomogeneous background media, SIAM J. Appl. Math., 67, 1353-1378, (2007) · Zbl 1130.45011 · doi:10.1137/060658618
[15] El Badia, A.; Ha-Duong, T., An inverse source problem in potential analysis, Inverse Problems, 16, 651-663, (2000) · Zbl 0963.35194 · doi:10.1088/0266-5611/16/3/308
[16] El Badia, A.; Nara, T., An inverse source problem for Helmholtz’s equation from the Cauchy data with a single wave number, Inverse Problems, 27, (2011) · Zbl 1231.35299 · doi:10.1088/0266-5611/27/10/105001
[17] Eller, M.; Valdivia, N., Acoustic source identification using multiple frequency information, Inverse Problems, 25, (2009) · Zbl 1181.35328 · doi:10.1088/0266-5611/25/11/115005
[18] He, S.; Romanov, V., Identification of dipole sources in a bounded domain for Maxwell’s equations, Wave Motion, 28, 25-44, (1998) · Zbl 1074.78506 · doi:10.1016/S0165-2125(97)00063-2
[19] Ivanyshyn, O.; Kress, R., Inverse scattering for surface impedance from phaseless far field data, J. Comput. Phys., 230, 3443-3452, (2011) · Zbl 1218.65123 · doi:10.1016/j.jcp.2011.01.038
[20] Klibanov, M. V.; Romanov, V. G., Uniqueness of a 3D coefficient inverse scattering problem without the phase information, Inverse Problems, 33, (2017) · Zbl 1516.35519 · doi:10.1088/1361-6420/aa7a18
[21] Li, J.; Liu, H.; Zou, J., Strengthened linear sampling method with a reference ball, SIAM J. Sci. Comp., 31, 4013-4040, (2009) · Zbl 1205.35339 · doi:10.1137/080734170
[22] Liu, H.; Uhlmann, G., Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Problems, 31, (2015) · Zbl 1328.35316 · doi:10.1088/0266-5611/31/10/105005
[23] Maretzke, S.; Hohage, T., Stability estimates for linearized near-field phase retrieval in x-ray phase contrast imaging, SIAM J. Appl. Math., 77, 384-408, (2017) · Zbl 1358.78025 · doi:10.1137/16M1086170
[24] Novikov, R., Inverse scattering without phase information, Séminaire Laurent Schwartz—EDP Appl. Exp., 16, 13, (2015) · Zbl 1352.81056
[25] Novikov, R., Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions, J. Geom. Anal., 26, 1-14, (2015) · Zbl 1338.81361 · doi:10.1007/s12220-014-9553-7
[26] Olver, F. W J., Asymptotics and Special Functions, (1974), New York: Academic, New York · Zbl 0303.41035
[27] Wang, G.; Ma, F.; Guo, Y.; Li, J., Solving the multi-frequency electromagnetic inverse source problem by the Fourier method, J. Differ. Equ., 265, 417-443, (2018) · Zbl 1388.78005 · doi:10.1016/j.jde.2018.02.036
[28] Wang, X.; Guo, Y.; Zhang, D.; Liu, H., Fourier method for recovering acoustic sources from multi-frequency far-field data, Inverse Problems, 33, (2017) · Zbl 1401.35352 · doi:10.1088/1361-6420/aa573c
[29] Wang, X.; Song, M.; Guo, Y.; Li, H.; Liu, H., Fourier method for identifying electromagnetic sources with multi-frequency far-field data, (2018)
[30] Watson, G. N., A Treatise on The Theory of Bessel Functions, (1952), Cambridge: Cambridge University Press, Cambridge
[31] Xu, X.; Zhang, B.; Zhang, H., Uniqueness in inverse scattering problems with phaseless far-field data at a fixed frequency, SIAM J. Appl. Math., 78, 1737-1753, (2018) · Zbl 1394.78015 · doi:10.1137/17m1149699
[32] Zhang, B.; Zhang, H., Imaging of locally rough surfaces from intensity-only far-field or near-field data, Inverse Problems, 33, (2017) · Zbl 1388.35227 · doi:10.1088/1361-6420/aa5fc8
[33] Zhang, B.; Zhang, H., Recovering scattering obstacles by multi-frequency phaseless far-field data, J. Comput. Phys., 345, 58-73, (2017) · Zbl 1378.35210 · doi:10.1016/j.jcp.2017.05.022
[34] Zhang, D.; Guo, Y., Uniqueness results on phaseless inverse scattering with a reference ball, Inverse Problems, 34, (2018) · Zbl 1442.35553 · doi:10.1088/1361-6420/aac53c
[35] Zhang, D.; Guo, Y., Fourier method for solving the multi-frequency inverse source problem for the Helmholtz equation, Inverse Problems, 31, (2015) · Zbl 1325.35288 · doi:10.1088/0266-5611/31/3/035007
[36] Zhang, D.; Guo, Y.; Li, J.; Liu, H., Locating multiple multipolar acoustic sources using the direct sampling method, Commun. Comput. Phys., (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.