×

On interpolating sesqui-harmonic maps between Riemannian manifolds. (English) Zbl 1442.58013

Harmonic maps between Riemannian manifolds are critical points of the energy functional \(\int_M |d\phi|^2 dV\) for maps \(\phi: (M, g) \to (N, h)\), and biharmonic maps are critical points of the bienergy functional \(\int_M |\tau(\phi)|^2dV\), where \(\tau(\phi)\) is the torsion of \(\phi\).
In this paper, the author studies an action functional that interpolates between energy functional and bienergy functional defined by \[ E_{\delta_1, \delta_2}(\phi) = \delta_1 \int_M |d\phi|^2 dV + \delta_2 \int_M |\tau(\phi)|^2 dV\tag{1} \] with \(\delta_1, \delta_2 \in\mathbb{R}\). There have been several articles dealing with some particular aspect of (1) with restrictive \(\delta_1, \delta_2\) or under immersion of maps \(\phi\) [S. Cao, J. Geom. Phys. 61, No. 12, 2378–2383 (2011; Zbl 1226.53056); J. Eells and L. Lemaire, Bull. Lond. Math. Soc. 10, 1–68 (1978; Zbl 0401.58003); H. I. Eliasson, in: Global Analysis Appl., internat. Sem. Course Trieste 1972, Vol. II, 113–135 (1974; Zbl 0324.49034); T. Lamm, Calc. Var. Partial Differ. Equ. 22, No. 4, 421–445 (2005; Zbl 1070.58017); L. Lemaire, Lect. Notes Math. 838, 187–193 (1981; Zbl 0437.58005); E. Loubeau and S. Montaldo, Proc. Edinb. Math. Soc., II. Ser. 51, No. 2, 421–437 (2008; Zbl 1144.58010); Y. Luo, Differ. Geom. Appl. 35, 1–8 (2014; Zbl 1295.53065); S. Maeta, J. Geom. Phys. 62, No. 11, 2288–2293 (2012; Zbl 1252.53004)]. In this paper, the author wants to put the focus on arbitrary maps between Riemannian manifolds. The Euler-Lagrange equation for (1) is \[ \delta_2 \Delta \tau(\phi) = \delta_2 R^N(d\phi(e_\alpha, \tau(\phi))d\phi(e_\alpha) +\delta_1 \tau(\phi)\tag{2} \] and the critical points of (1) are called interpolating sesqui-harmonic maps. As in the case of biharmonic maps, it is obvious that harmonic maps are interpolating sesqui-harmonic maps solving (2).
First, the author derives the energy-momentum tensor associated to (1) as an explicit form and shows that it is divergence-free as harmonic maps and biharmonic maps. Then the author discusses a conservation law for solutions of the interpolating sesqui-harmonic map equation in the case that the target manifold admits Killing vector fields. The author also derives explicit solutions and investigates several properties in cases of flat and \(3\)-dimensional sphere.
Second, the author studies the qualitative behavior of interpolating sesqui-harmonic maps. Suppose that \((M, g)\) is a compact Riemannian manifold and let \(\phi: M \to N\) be a smooth solution of (2). The author proves that, if \(N\) has nonpositive sectional curvature and \(\delta_1, \delta_2\) have the same sign, then \(\phi\) is harmonic. When \(M\) is noncompact, the author shows that, if \(\phi: M \to N\) is a Riemannian immersion that solves (2) with \(|\tau(\phi)| = \mathrm{const}.\), and if \(N\) has nonpositive sectional curvature and and \(\delta_1, \delta_2\) have the same sign, then \(\phi\) must be harmonic. The author also proves a unique continuation theorem for interpolating sesqui-harmonic maps as for harmonic maps.
Related to vanishing of energy-momentum tensor, the author shows harmonicity and triviality of interpolating sesqui-harmonic maps. Let \(\phi : M\to N\) be a smooth map with vanishing energy-momentum tensor. Then the followings hold:
(i)
If \(\dim(M) = 2\), then \(\phi\) is harmonic.
(ii)
If either \(\dim(M) = 3\) and \(\delta_1\delta_2 <0\), or \(\dim(M) \ge 5\) and \(\delta_1\delta_2 >0\), then \(\phi\) is trivial.
(iii)
If \(\dim(M) = 4\), then \(\phi\) is trivial.

Finally, the author studies a Liouville-type property for interpolating sesqui-harmonic maps between complete Riemannian manifolds. Let \((M, g)\) be a complete noncompact Riemannian manifold and \((N, h)\) a manifold with nonpositive sectional curvature. The author proves that, if \(\phi: M\to N\) is a smooth solution of (2) with \(\delta_1 \delta_2 >0\) and \(\mathrm{vol}(M, g) = \infty\), and if \(\int_M |\tau(\phi)|^p dV <\infty\) for \(2 \le p< \infty\), then \(\phi\) must be constant.

MSC:

58E20 Harmonic maps, etc.
31B30 Biharmonic and polyharmonic equations and functions in higher dimensions

References:

[1] Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl., 9, 36, 235-249 (1957) · Zbl 0084.30402
[2] Baird, P.; Eells, J., A conservation law for harmonic maps, Lecture Notes in Mathematics, 1-25 (1981), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 0485.58008
[3] Baird, P.; Kamissoko, D., On constructing biharmonic maps and metrics, Ann. Global Anal. Geom., 23, 1, 65-75 (2003) · Zbl 1027.31004 · doi:10.1023/A:1021213930520
[4] Branding, V., On conservation laws for the supersymmetric sigma model, Results Math., 72, 4, 2181-2201 (2017) · Zbl 1386.58007 · doi:10.1007/s00025-017-0756-7
[5] Branding, V., A Liouville-type theorem for biharmonic maps between complete Riemannian manifolds with small energies, Arch. Math. (Basel), 111, 3, 329-336 (2018) · Zbl 1400.58003 · doi:10.1007/s00013-018-1189-6
[6] Branding, V., Luo, Y.: A nonexistence theorem for proper biharmonic maps into general Riemannian manifolds. arXiv preprint arXiv:1806.11441 (2018) · Zbl 1434.53067
[7] Caddeo, R.; Montaldo, S.; Oniciuc, C., Biharmonic submanifolds of \(S^3\), Int. J. Math., 12, 8, 867-876 (2001) · Zbl 1111.53302 · doi:10.1142/S0129167X01001027
[8] Caddeo, R.; Montaldo, S.; Oniciuc, C., Biharmonic submanifolds in spheres, Isr. J. Math., 130, 109-123 (2002) · Zbl 1038.58011 · doi:10.1007/BF02764073
[9] Cao, S., Biminimal hypersurfaces in a sphere, J. Geom. Phys., 61, 12, 2378-2383 (2011) · Zbl 1226.53056 · doi:10.1016/j.geomphys.2011.07.003
[10] Chiang, Yuan-Jen, Bi-Yang-Mills Fields, Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields, 339-350 (2013), Basel: Springer Basel, Basel · Zbl 1277.58001
[11] Eells, J.; Lemaire, L., A report on harmonic maps, Bull. Lond. Math. Soc., 10, 1, 1-68 (1978) · Zbl 0401.58003 · doi:10.1112/blms/10.1.1
[12] Eells, J.; Wood, Jc, Restrictions on harmonic maps of surfaces, Topology, 15, 3, 263-266 (1976) · Zbl 0328.58008 · doi:10.1016/0040-9383(76)90042-2
[13] Eliasson, H.I.: Introduction to global calculus of variations. pp 113-135 (1974) · Zbl 0324.49034
[14] Gaffney, Mp, A special Stokes’s theorem for complete Riemannian manifolds, Ann. Math., 2, 60, 140-145 (1954) · Zbl 0055.40301 · doi:10.2307/1969703
[15] Hélein, Frédéric; Wood, John C., Harmonic maps, Handbook of Global Analysis, 417-491 (2008) · Zbl 1236.58002
[16] Jiang, Gy, \(2\)-harmonic maps and their first and second variational formulas, Chin. Ann. Math. Ser. A, 7, 4, 389-402 (1986) · Zbl 0628.58008
[17] Kleinert, H., The membrane properties of condensing strings, Phys. Lett. B, 174, 3, 335-338 (1986) · doi:10.1016/0370-2693(86)91111-1
[18] Ku, Yb, Interior and boundary regularity of intrinsic biharmonic maps to spheres, Pac. J. Math., 234, 1, 43-67 (2008) · Zbl 1154.58306 · doi:10.2140/pjm.2008.234.43
[19] Lamm, T., Biharmonic map heat flow into manifolds of nonpositive curvature, Calc. Var. Part. Diff. Eq., 22, 4, 421-445 (2005) · Zbl 1070.58017 · doi:10.1007/s00526-004-0283-8
[20] Lemaire, Luc, Minima and critical points of the energy in dimension two, Global Differential Geometry and Global Analysis, 187-193 (1981), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 0437.58005
[21] Loubeau, E.; Montaldo, S., Biminimal immersions, Proc. Edinb. Math. Soc., 51, 2, 421-437 (2008) · Zbl 1144.58010 · doi:10.1017/S0013091506000393
[22] Loubeau, E.; Montaldo, S.; Oniciuc, C., The stress-energy tensor for biharmonic maps, Math. Z., 259, 3, 503-524 (2008) · Zbl 1139.58010 · doi:10.1007/s00209-007-0236-y
[23] Luo, Y., On biminimal submanifolds in nonpositively curved manifolds, Differ. Geom. Appl., 35, 1-8 (2014) · Zbl 1295.53065 · doi:10.1016/j.difgeo.2014.05.001
[24] Maeta, S., Biminimal properly immersed submanifolds in the Euclidean spaces, J. Geom. Phys., 62, 11, 2288-2293 (2012) · Zbl 1252.53004 · doi:10.1016/j.geomphys.2012.07.006
[25] Maeta, S., Biharmonic maps from a complete Riemannian manifold into a non-positively curved manifold, Ann. Global Anal. Geom., 46, 1, 75-85 (2014) · Zbl 1315.58011 · doi:10.1007/s10455-014-9410-8
[26] Montaldo, S., Oniciuc, C.: A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina, 47(2), 1-22 (2007) 2006 · Zbl 1140.58004
[27] Oniciuc, C.: Biharmonic maps between Riemannian manifolds. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 48(2), 237-248 (2003), 2002 · Zbl 1061.58015
[28] Polyakov, A., Fine structure of strings, Nucl. Phys. B, 268, 2, 406-412 (1986) · doi:10.1016/0550-3213(86)90162-8
[29] Sampson, Jh, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Supér., 11, 2, 211-228 (1978) · Zbl 0392.31009 · doi:10.24033/asens.1344
[30] Wang, C., Remarks on biharmonic maps into spheres, Calc. Var. Part. Differ. Eq., 21, 3, 221-242 (2004) · Zbl 1060.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.