×

Canonical metrics on holomorphic filtrations over compact Hermitian manifolds. (English) Zbl 1442.53018

Summary: The purpose of this paper is twofold. We first solve the Dirichlet problem for \(\tau\)-Hermitian-Einstein equations on holomorphic filtrations over compact Hermitian manifolds. Secondly, by using Uhlenbeck-Yau’s continuity method, we prove the existence of approximate \(\tau\)-Hermitian-Einstein structure on holomorphic filtrations over closed Gauduchon manifolds.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
53C55 Global differential geometry of Hermitian and Kählerian manifolds
32Q20 Kähler-Einstein manifolds
Full Text: DOI

References:

[1] Álvarez-Cónsul, L.; García-Prada, L., Dimensional reduction, Sl \((2,{\mathbb{C}} )\)-equivariant bundles and stable holomorphic chains, Int. J. Math., 12, 159-201 (2001) · Zbl 1110.32305 · doi:10.1142/S0129167X01000745
[2] Álvarez-Cónsul, L.; García-Prada, L., Hitchin-Kobayashi correspondence, quivers, and vortices, Commun. Math. Phys., 238, 1-33 (2003) · Zbl 1051.53018 · doi:10.1007/s00220-003-0853-1
[3] Biquard, O., On parabolic bundles over a complex surface, J. Lond. Math. Soc., 53, 302-316 (1996) · Zbl 0862.53025 · doi:10.1112/jlms/53.2.302
[4] Biswas, I.; Schumacher, G., Yang-Mills equation for stable Higgs sheaves, Int. J. Math., 20, 541-556 (2009) · Zbl 1169.53017 · doi:10.1142/S0129167X09005406
[5] Biswas, I.; Bruzzo, U.; Graña Otero, B.; Giudice, AL, Yang-Mills-Higgs connections on Calabi-Yau manifolds, Asian J. Math., 20, 989-1000 (2016) · Zbl 1362.32014 · doi:10.4310/AJM.2016.v20.n5.a8
[6] Bradlow, SB, Vortices in holomorphic line bundles over closed Kähler manifolds, Commun. Math. Phys., 135, 1-17 (1990) · Zbl 0717.53075 · doi:10.1007/BF02097654
[7] Bruzzo, U.; Graña Otero, B., Metrics on semistable and numerically effective Higgs bundles, J. Reine Angew. Math., 612, 59-79 (2007) · Zbl 1138.14024
[8] Bruzzo, U.; Graña Otero, B., Semistable and numerically effective principal (Higgs) bundles, Adv. Math., 226, 3655-3676 (2011) · Zbl 1263.14019 · doi:10.1016/j.aim.2010.10.026
[9] Bruzzo, U.; Graña Otero, B., Approximate Hitchin-Kobayashi correspondence for Higgs G-bundles, Int. J. Geom. Methods Mod. Phys., 11, 1460015 (2014) · Zbl 1312.53042 · doi:10.1142/S0219887814600159
[10] Buchdahl, NP, Hermitian-Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann., 280, 625-648 (1988) · Zbl 0617.32044 · doi:10.1007/BF01450081
[11] Cardona, SAH, Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles. I: generalities and the one-dimensional case, Ann. Glob. Anal. Geom., 42, 349-370 (2012) · Zbl 1260.58006 · doi:10.1007/s10455-012-9316-2
[12] Donaldson, SK, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc., 3, 1-26 (1985) · Zbl 0529.53018 · doi:10.1112/plms/s3-50.1.1
[13] Donaldson, SK, Boundary value problems for Yang-Mills fields, J. Geom. Phys., 8, 89-122 (1992) · Zbl 0747.53022 · doi:10.1016/0393-0440(92)90044-2
[14] Gauduchon, P., La 1-forme de torsion d’une variété hermitienne compacte, Math. Ann., 267, 495-518 (1984) · Zbl 0523.53059 · doi:10.1007/BF01455968
[15] Hamilton, RS, Harmonic Maps of Manifolds with Boundary (2006), Berlin: Springer, Berlin
[16] Hitchin, NJ, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., 3, 59-126 (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[17] Hong, MC, Heat flow for the Yang-Mills-Higgs field and the Hermitian Yang-Mills-Higgs metric, Ann. Glob. Anal. Geom., 20, 23-46 (2001) · Zbl 0988.53009 · doi:10.1023/A:1010688223177
[18] Jacob, A., Existence of approximate Hermitian-Einstein structures on semi-stable bundles, Asian J. Math., 18, 859-883 (2014) · Zbl 1315.53079 · doi:10.4310/AJM.2014.v18.n5.a5
[19] Jacob, A.; Walpuski, T., Hermitian Yang-Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds, Commun. PDE, 101, 1566-1598 (2018) · Zbl 1516.53029 · doi:10.1080/03605302.2018.1517792
[20] Kobayashi, S., Curvature and stability of vector bundles, Proc. Jpn. Acad. Ser. A, 58, 158-162 (1982) · Zbl 0538.32021 · doi:10.3792/pjaa.58.158
[21] Kobayashi, S., Differential Geometry of Complex Vector Bundles (1987), Princeton: Princeton University Press, Princeton · Zbl 0708.53002
[22] Li, J., Yau, S.T.: Hermitian-Yang-Mills connection on non-Kähler manifolds. In: Mathematical Aspects of String Theory, pp. 560-573. World Scientific, New York (1987) · Zbl 0664.53011
[23] Li, JY; Zhang, X., Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles, Calc. Var., 52, 783-795 (2015) · Zbl 1311.53022 · doi:10.1007/s00526-014-0733-x
[24] Li, JY; Zhang, CJ; Zhang, X., Semi-stable Higgs sheaves and Bogomolov type inequality, Calc. Var., 56, 1-33 (2017) · Zbl 1379.35074 · doi:10.1007/s00526-016-1094-4
[25] Li, JY; Zhang, CJ; Zhang, X., The limit of the Hermitian-Yang-Mills flow on reflexive sheaves, Adv. Math., 325, 165-214 (2018) · Zbl 1381.53046 · doi:10.1016/j.aim.2017.11.029
[26] Li, JY; Zhang, CJ; Zhang, X., A note on curvature estimate of the Hermitian-Yang-Mills flow, Commun. Math. Stat., 6, 319-358 (2018) · Zbl 1428.53031 · doi:10.1007/s40304-018-0135-z
[27] Li, Z.; Zhang, X., Dirichlet problem for Hermitian Yang-Mills-Higgs equations over Hermitian manifolds, J. Math. Anal. Appl., 310, 68-80 (2005) · Zbl 1082.58022 · doi:10.1016/j.jmaa.2005.01.033
[28] Lübke, M., Stability of Einstein-Hermitian vector bundles, Manuscr. Math., 42, 245-257 (1983) · Zbl 0558.53037 · doi:10.1007/BF01169586
[29] Lübke, M.; Teleman, A., The Kobayashi-Hitchin correspondence (1995), Singapore: World Scientific Publishing, Singapore · Zbl 0849.32020
[30] Lübke, M.; Teleman, A., The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds (2006), Providence: Mem. AMS, Providence · Zbl 1103.53014
[31] Mochizuki, T.: Kobayashi-Hitchin correspondence for tame harmonic bundles and an application. Astérisque Soc. Math. France 309, (2006) · Zbl 1119.14001
[32] Narasimhan, MS; Seshadri, CS, Stable and unitary vector bundles on a compact Riemann surface, Ann. Math., 82, 540-567 (1965) · Zbl 0171.04803 · doi:10.2307/1970710
[33] Nie, Y.; Zhang, X., Semistable Higgs bundles over compact Gauduchon manifolds, J. Geom. Anal., 28, 627-642 (2018) · Zbl 1391.32026 · doi:10.1007/s12220-017-9835-y
[34] Simpson, CT, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Am. Math. Soc., 1, 867-918 (1988) · Zbl 0669.58008 · doi:10.1090/S0894-0347-1988-0944577-9
[35] Taylor, ME, Partial Differential Equations I (Applied Mathematical Sciences) (2011), New York: Springer, New York · Zbl 1206.35004
[36] Uhlenbeck, KK; Yau, ST, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math., 39S, S257-S293 (1986) · Zbl 0615.58045 · doi:10.1002/cpa.3160390714
[37] Zhang, C., Zhang, P., Zhang, X.: Higgs bundles over non-compact Gauduchon manifolds. arXiv:1804.08994 (2018) · Zbl 1391.32026
[38] Zhang, X., Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds, J. Geom. Phys., 53, 315-335 (2005) · Zbl 1075.58010 · doi:10.1016/j.geomphys.2004.07.002
[39] Zhang, X., Hermitian Yang-Mills-Higgs metrics on complete Kähler manifolds, Can. J. Math., 57, 871-896 (2005) · Zbl 1083.58014 · doi:10.4153/CJM-2005-034-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.