×

Adaptive eigenspace for multi-parameter inverse scattering problems. (English) Zbl 1442.49032

Summary: A nonlinear optimization method is proposed for inverse scattering problems in the frequency domain, when the unknown medium is characterized by one or several spatially varying parameters. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type method combined with frequency stepping. Instead of a grid-based discrete representation, each parameter is projected to a separate finite-dimensional subspace, which is iteratively adapted during the optimization. Each subspace is spanned by the first few eigenfunctions of a linearized regularization penalty functional chosen a priori. The (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Numerical results illustrate the accuracy and efficiency of the resulting adaptive eigenspace regularization for single and multi-parameter problems, including the well-known Marmousi model from geosciences.

MSC:

49K45 Optimality conditions for problems involving randomness
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J25 Boundary value problems for second-order elliptic equations
35P25 Scattering theory for PDEs
35R30 Inverse problems for PDEs
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory

Software:

tn; eigs
Full Text: DOI

References:

[1] Cakoni, F.; Colton, D. L., Qualitative methods in inverse scattering theory: an introduction, (Interaction of Mechanics and Mathematics Series (2006), Springer) · Zbl 1099.78008
[2] Tarantola, A., Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 8, 1259-1266 (1984)
[3] Haber, E.; Ascher, U. M.; Oldenburg, D., On optimization techniques for solving nonlinear inverse problems, Inverse Problems, 16, 1263 (2000) · Zbl 0974.49021
[4] Pratt, R. G.; Shin, C.; Hicks, G. J., Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophys. J. Int., 133, 2, 341-362 (1998)
[5] Pratt, R. G., Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model, Geophysics, 64, 3, 888-901 (1999)
[6] Haber, E.; Chung, M., Simultaneous source for non-uniform data variance and missing data, CoRR (2014), arXiv:1404.5254
[7] Virieux, J.; Operto, S., An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, 6, WCC1-WCC26 (2009)
[8] Métivier, L.; Brossier, R.; Virieux, J.; Operto, S., Full waveform inversion and the truncated Newton method, SIAM J. Sci. Comput., 35, 2, B401-B437 (2013) · Zbl 1266.86002
[9] Grote, M. J.; Huber, J.; Kourounis, D.; Schenk, O., Inexact interior-point method for PDE-constrained nonlinear optimization, SIAM J. Sci. Comput., 36, 3, A1251-A1276 (2014) · Zbl 1305.49040
[10] Pan, W.; Innanen, K., Suppress parameter cross-talk for elastic full-waveform inversion: Parametrization and acquisition geometry, GeoConvention (2016)
[11] Prieux, V.; Brossier, R.; Operto, S.; Virieux, J., Multiparameter full waveform inversion of multicomponent Ocean-Bottom-Cable data from Valhall field. Part 1: imaging compressional wave speed, density and attenuation, Geophys. J. Int., 194, 3, 1640-1664 (2013)
[12] B. Peters, F.J. Hermann, A sparse reduced Hessian approximation for multi-parameter wavefield reconstruction inversion, in: SEG Denver Annual Meeting, 2014.; B. Peters, F.J. Hermann, A sparse reduced Hessian approximation for multi-parameter wavefield reconstruction inversion, in: SEG Denver Annual Meeting, 2014.
[13] Tikhonov, A. N., On the stability of inverse problems, Dokl. Akad. Nauk SSSR, 39, 5, 195-198 (1943)
[14] Vogel, C., Computational Methods for Inverse Problems (2002), Society for Industrial and Applied Mathematics · Zbl 1008.65103
[15] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 1, 259-268 (1992) · Zbl 0780.49028
[16] Dobson, D. C.; Santosa, F., Recovery of blocky images from noisy and blurred data, SIAM J. Appl. Math., 56, 4, 1181-1198 (1996) · Zbl 0858.68121
[17] Vogel, C. R.; Oman, E., Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17, 1, 227-238 (1996) · Zbl 0847.65083
[18] Durand, S.; Nikolova, M., Stability of the minimizers of least squares with a non-convex regularization. Part I: Local behavior, Appl. Math. Optim., 53, 2, 185-208 (2006) · Zbl 1134.49017
[19] Asnaashari, A.; Brossier, R.; Garambois, S.; Audebert, F.; Thore, P.; Virieux, J., Regularized seismic full waveform inversion with prior model information, Geophysics, 78, 2, R25-R36 (2013)
[20] Chavent, G., Nonlinear Least Squares for Inverse Problems (1996), Springer Science & Business Media · Zbl 0848.35138
[21] de Buhan, M.; Osses, A., Logarithmic stability in determination of a 3D viscoelastic coefficient and a numerical example, Inverse Problems, 26, 9, Article 95006 pp. (2010) · Zbl 1200.35334
[22] de Buhan, M.; Kray, M., A new approach to solve the inverse scattering problem for waves: combining the TRAC and the adaptive inversion methods, Inverse Problems, 29, 8, Article 085009 pp. (2013) · Zbl 1279.65115
[23] de Buhan, M.; Darbas, M., Numerical resolution of an electromagnetic inverse medium problem at fixed frequency, Comput. Math. Appl., 74, 12, 3111-3128 (2017) · Zbl 1397.65242
[24] Gilboa, G.; Moeller, M.; Burger, M., Nonlinear spectral analysis vie one-homogeneous functionals: Overview and future prospects, J. Math. Imaging Vision, 56, 306-319 (2016) · Zbl 1409.94182
[25] Eisenstat, S. C.; Walker, H. F., Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17, 1, 16-32 (1996) · Zbl 0845.65021
[26] Dembo, R. S.; Steihaug, T., Truncated-Newton algorithms for large-scale unconstrained optimization, Math. Program., 26, 2, 190-212 (1983) · Zbl 0523.90078
[27] Nash, S. G., A survey of truncated-Newton methods, J. Comput. Appl. Math., 124, 1-2, 45-59 (2000) · Zbl 0969.65054
[28] Chen, Y., Inverse scattering via Heisenberg’s uncertainty principle, Inverse Problems, 13, 2, 253 (1997) · Zbl 0872.35123
[29] Grote, M. J.; Kray, M.; Nahum, U., Adaptive eigenspace method for inverse scattering problems in the frequency domain, Inverse Probl., 33, Article 025006 pp. (2017) · Zbl 1515.35343
[30] Gallardo, A.; Luis; Max, M. A., Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints, J. Geophys. Res., 109, B3 (2004)
[31] Bao, G.; Lin, J., Imaging of local surface displacement on an infinite ground plane: The multiple frequency case, SIAM J. Appl. Math., 71, 5, 1733-1752 (2011) · Zbl 1233.35202
[32] Lehoucq, R. B.; Sorensen, D. C., Deflation techniques for an implicitly re-started Arnoldi iteration, SIAM J. Matrix Anal. Appl., 17, 789-821 (1996) · Zbl 0863.65016
[33] Golub, G. H.; Hansen, P. C.; O’Leary, D. P., Tikhonov regularization and total least squares, SIAM J. Matrix Anal. Appl., 21, 1, 185-194 (1999) · Zbl 0945.65042
[34] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems, volume 375 (1996), Springer Science & Business Media · Zbl 0859.65054
[35] Nahum, U., Adaptive Eigenspace for Inverse Problems in the Frequency Domain (2016), University of Basel, (Ph.D. thesis)
[36] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), Springer: Springer New York · Zbl 1104.65059
[37] Nahum, U.; Zam, A.; Cattin, P. C., Bone reconstruction and depth control during laser ablation, (International Workshop on Computational Methods and Clinical Applications in Musculoskeletal Imaging (2018), Springer), 126-135
[38] van den Berg, P. M.; Abubakar, A.; Fokkema, J. T., Multiplicative regularization for contrast profile inversion, Radio Sci., 38, 2, n/a-n/a (2003), 8022
[39] Irons, T., Marmousi Model (1988), www.reproducibility.org/RSF/book/data/marmousi/paper.pdf
[40] Brossier, R.; Operto, S.; Virieux, J., Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion, Geophysics, 74, 6, WCC105-WCC118 (2009)
[41] Métivier, L.; Bretaudeau, F.; Brossier, R.; Operto, S.; Virieux, J., Full waveform inversion and the truncated Newton method: quantitative imaging of complex subsurface structures, Geophys. Prospect., 62, 6, 1353-1375 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.