×

A lattice-theoretic approach to the Bourque-Ligh conjecture. (English) Zbl 1442.11054

Summary: The Bourque-Ligh conjecture states that if \(S=\{x_1,x_2,\dots,x_n\}\) is a gcd-closed set of positive integers with distinct elements, then the LCM matrix \([S] =[\mathrm{lcm}(x_i,x_j)]\) is invertible. It is known that this conjecture holds for \(n\leq 7\) but does not generally hold for \(n\geq 8\). In this paper, we study the invertibility of matrices in a more general matrix class, join matrices. At the same time, we provide a lattice-theoretic explanation for this solution of the Bourque-Ligh conjecture. In fact, let \((P,\leq)=(P\wedge,\vee)\) be a lattice, let \(S=\{x_1,x_2,\dots, x_n\}\) be a subset of \(P\) and let \(f:P\to\mathbb{C}\) be a function. We study under which conditions the join matrix \([S]_f=[f(x_i\vee x_j)]\) on \(S\) with respect to \(f\) is invertible on a meet closed set \(S\) (i.e. \(x_i\), \(x_i\in S\Rightarrow x_i\wedge x_j\in S)\).

MSC:

11C20 Matrices, determinants in number theory
15B36 Matrices of integers
06B05 Structure theory of lattices

References:

[1] Rajarama Bhat, Bv., On greatest common divisor matrices and their applications, Linear Algebra Appl, 158, 77-97 (1991) · Zbl 0754.15012 · doi:10.1016/0024-3795(91)90051-W
[2] Haukkanen, P., On meet matrices on posets, Linear Algebra Appl, 249, 111-123 (1996) · Zbl 0870.15016 · doi:10.1016/0024-3795(95)00349-5
[3] Korkee, I.; Haukkanen, P., On meet and join matrices associated with incidence functions, Linear Algebra Appl, 372, 127-153 (2003) · Zbl 1036.06005 · doi:10.1016/S0024-3795(03)00497-X
[4] Korkee, I.; Haukkanen, P., Bounds for determinants of meet matrices associated with incidence functions, Linear Algebra Appl, 329, 77-88 (2001) · Zbl 0991.15011 · doi:10.1016/S0024-3795(01)00238-5
[5] Altinisik, E.; Sagan, Be; Tuglu, N., GCD matrices, posets, and nonintersecting paths, Linear Multilinear Algebra, 53, 75-84 (2005) · Zbl 1119.11022 · doi:10.1080/03081080500054612
[6] Hong, S.; Sun, Q., Determinants of matrices associated with incidence functions on posets, Czechoslovak Math J, 54, 129, 431-443 (2004) · Zbl 1080.11023 · doi:10.1023/B:CMAJ.0000042382.61841.0c
[7] Korkee, I.; Haukkanen, P., On meet matrices with respect to reduced, extended and exchanged sets, JP J Algebra Number Theory Appl, 4, 559-575 (2004) · Zbl 1083.15014
[8] Smith, Hjs., On the value of a certain arithmetical determinant, Proc London Math Soc, 7, 208-212 (187576) · JFM 08.0074.03
[9] Haukkanen, P.; Ilmonen, P.; Nalli, A., On unitary analogs of GCD reciprocal LCM matrices, Linear Multilinear Algebra, 58, 599-616 (2010) · Zbl 1231.11032 · doi:10.1080/03081080902816576
[10] Haukkanen, P.; Sillanpää, J., Some analogues of Smith’s determinant, Linear Multilinear Algebra, 41, 233-244 (1996) · Zbl 0869.15005 · doi:10.1080/03081089608818478
[11] Korkee, I.On meet and join matrices associated with incidence functions [PhD thesis]. Acta Universitatis Tamperensis 1149. Tampere: Tampere University Press; 2006. · Zbl 1036.06005
[12] Haukkanen, P.; Wang, J.; Sillanpää, J., On Smith’s determinant, Linear Algebra Appl, 258, 251-269 (1997) · Zbl 0883.15002 · doi:10.1016/S0024-3795(96)00192-9
[13] Sándor, J.; Crstici, B., Handbook of number theory II (2004), Dordrecht: Kluwer, Dordrecht · Zbl 1079.11001
[14] Bourque, K.; Ligh, S., On GCD and LCM matrices, Linear Algebra Appl, 174, 65-74 (1992) · Zbl 0761.15013 · doi:10.1016/0024-3795(92)90042-9
[15] Hong, S., On the Bourque-Ligh conjecture of least common multiple matrices, J Algebra, 218, 216-228 (1999) · Zbl 1015.11007 · doi:10.1006/jabr.1998.7844
[16] Hong, S., Nonsingularity of matrices associated with classes of arithmetical functions, J Algebra, 281, 1-14 (2004) · Zbl 1064.11024 · doi:10.1016/j.jalgebra.2004.07.026
[17] Hong, S., Nonsingularity of least common multiple matrices on gcd-closed sets, J Number Theory, 113, 1-9 (2005) · Zbl 1080.11022 · doi:10.1016/j.jnt.2005.03.004
[18] Li, M., Notes on Hong’s conjectures of real number power LCM matrices, J Algebra, 315, 654-664 (2007) · Zbl 1230.11036 · doi:10.1016/j.jalgebra.2007.05.005
[19] Hong, S.; Loewy, R., Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasg Math J, 46, 551-569 (2004) · Zbl 1083.11021 · doi:10.1017/S0017089504001995
[20] Hong, S.; Loewy, R., Asymptotic behavior of the smallest eigenvalue of matrices associated with completely even functions (mod r), Int J Number Theory, 7, 1681-1704 (2011) · Zbl 1273.11052 · doi:10.1142/S179304211100437X
[21] Ilmonen, P., On meet hypermatrices and their eigenvalues, Linear Multilinear Algebra, 64, 5, 842-855 (2016) · Zbl 1362.11037 · doi:10.1080/03081087.2015.1059797
[22] Mattila, M.; Haukkanen, P.; Mäntysalo, J., Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions, J Combin Theory Ser A, 135, 181-200 (2015) · Zbl 1343.11037 · doi:10.1016/j.jcta.2015.05.002
[23] Ovall, Js., Electron J Linear Algebra, 11, 51-58 (2004) · Zbl 1042.15009 · doi:10.13001/1081-3810.1121
[24] Birkhoff, G., Lattice theory, Vol. 25 (1984), Rhode Island: American Mathematical Society Colloquium Publications, Rhode Island · Zbl 0126.03801
[25] Rearick, D., Semi-multiplicative functions, Duke Math J, 33, 49-53 (1966) · Zbl 0139.27002 · doi:10.1215/S0012-7094-66-03308-4
[26] Sivaramakrishnan, R., Classical theory of arithmetic functions, 126 (1989), New York: Marcel Dekker, Inc., New York · Zbl 0657.10001
[27] Altinisik, E.; Tuglu, N.; Haukkanen, P., Determinant and inverse of meet and join matrices, Int J Math Math Sci (2007) · Zbl 1144.15001
[28] Mattila, M.; Haukkanen, P., Determinant and inverse of join matrices on two sets, Linear Algebra Appl, 438, 3891-3904 (2013) · Zbl 1281.15036 · doi:10.1016/j.laa.2011.12.014
[29] Aigner, M., Combinatorial theory (1979), Berlin: Springer-Verlag, Berlin · Zbl 0415.05001
[30] Stanley, Rp., Enumerative combinatorics, 49 (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0889.05001
[31] Mattila, M.; Haukkanen, P., On the positive definiteness and eigenvalues of meet and join matrices, Discrete Math, 326, 9-19 (2014) · Zbl 1290.15022 · doi:10.1016/j.disc.2014.02.018
[32] Heitzig, J.; Reinhold, J., Counting finite lattices, Algebra Universalis, 48, 43-53 (2002) · Zbl 1058.05002 · doi:10.1007/PL00013837
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.