×

On planar Cayley graphs and Kleinian groups. (English) Zbl 1442.05086

Summary: Let \(G\) be a finitely generated group acting faithfully and properly discontinuously by homeomorphisms on a planar surface \(X \subseteq \mathbb{S}^2\). We prove that \(G\) admits such an action that is in addition co-compact, provided we can replace \(X\) by another surface \(Y \subseteq \mathbb{S}^2\).
We also prove that if a group \(H\) has a finitely generated Cayley (multi-) graph \(C\) equivariantly embeddable in \(\mathbb{S}^2\), then \(C\) can be chosen so as to have no infinite path on the boundary of a face.
The proofs of these facts are intertwined, and the classes of groups they define coincide. In the orientation-preserving case they are exactly the (isomorphism types of) finitely generated Kleinian function groups. We construct a finitely generated planar Cayley graph whose group is not in this class.
In passing, we observe that the Freudenthal compactification of every planar surface is homeomorphic to the sphere.

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C10 Planar graphs; geometric and topological aspects of graph theory
57M60 Group actions on manifolds and cell complexes in low dimensions
57M07 Topological methods in group theory
57M15 Relations of low-dimensional topology with graph theory

References:

[1] Arzhantseva, G. N.; Cherix, P.-A., On the Cayley graph of a generic finitely presented group, Bull. Belg. Math. Soc. Simon Stevin, 11, 4, 589-601 (2004) · Zbl 1069.05038
[2] Babai, L\'{a}szl\'{o}, Some applications of graph contractions, J. Graph Theory, 1, 2, 125-130 (1977) · Zbl 0381.05029 · doi:10.1002/jgt.3190010207
[3] Babai, L\'{a}szl\'{o}, The growth rate of vertex-transitive planar graphs. Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 1997, 564-573 (1997), ACM, New York · Zbl 1321.05059
[4] Borzellino, Joseph Ernest, Riemannian geometry of orbifolds, 69 pp. (1992), ProQuest LLC, Ann Arbor, MI
[5] Bowditch, B. H.; Mess, G., A \(4\)-dimensional Kleinian group, Trans. Amer. Math. Soc., 344, 1, 391-405 (1994) · Zbl 0876.57020 · doi:10.2307/2154722
[6] BroPer L. E. J.Brouwer, On the structure of perfect sets of points, Proc.Koninklijke Akademie van Wetenschappen 12 (1910), 785-794.
[7] Brown, Morton, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc., 66, 74-76 (1960) · Zbl 0132.20002 · doi:10.1090/S0002-9904-1960-10400-4
[8] Dicks, Warren; Dunwoody, M. J., Groups acting on graphs, Cambridge Studies in Advanced Mathematics 17, xvi+283 pp. (1989), Cambridge University Press, Cambridge · Zbl 0665.20001
[9] diestelBook05 Reinhard Diestel, Graph theory, 3rd ed., Springer-Verlag, 2005. Electronic edition available at: \tt http://www.math.uni-hamburg.de/home/diestel/books/graph.theory. · Zbl 1074.05001
[10] Droms, Carl, Infinite-ended groups with planar Cayley graphs, J. Group Theory, 9, 4, 487-496 (2006) · Zbl 1099.20017 · doi:10.1515/JGT.2006.032
[11] Droms, Carl; Servatius, Brigitte; Servatius, Herman, Connectivity and planarity of Cayley graphs, Beitr\"{a}ge Algebra Geom., 39, 2, 269-282 (1998) · Zbl 0917.05036
[12] Dunwoody, M. J., The accessibility of finitely presented groups, Invent. Math., 81, 3, 449-457 (1985) · Zbl 0572.20025 · doi:10.1007/BF01388581
[13] DunPla M. J. Dunwoody, Planar graphs and covers, Preprint available at http://www.personal.\linebreak soton.ac.uk/mjd7/, 2009.
[14] ChGhLeSci Eric Charpentier, Etienne Ghys, Annick Lesne (eds.), The Scientific Legacy of Poincar\'e, volume 36 of History of mathematics. American Mathematical Soc, 2010.
[15] Klein Felix Klein, Vergleichende Betrachtungen \"uber neuere geometrische Forschungen, Verlag von Andreas Deichert, Erlangen, 1872. · Zbl 0288.50012
[16] Georgakopoulos, Agelos, Graph topologies induced by edge lengths, Discrete Math., 311, 15, 1523-1542 (2011) · Zbl 1223.05043 · doi:10.1016/j.disc.2011.02.012
[17] Georgakopoulos, Agelos, The planar cubic Cayley graphs, Mem. Amer. Math. Soc., 250, 1190, v+82 pp. (2017) · Zbl 1435.05001 · doi:10.1090/memo/1190
[18] planarPresI A. Georgakopoulos and M. Hamann, The planar Cayley graphs are effectively enumerable I: consistently planar graphs, To appear in Combinatorica. · Zbl 1463.05257
[19] planarPresII A. Georgakopoulos and M. Hamann, The planar Cayley graphs are effectively enumerable II, Preprint 2018. · Zbl 1463.05257
[20] Hatcher, Allen, Algebraic topology, xii+544 pp. (2002), Cambridge University Press, Cambridge · Zbl 1044.55001
[21] Hopf, Heinz, Enden offener R\"{a}ume und unendliche diskontinuierliche Gruppen, Comment. Math. Helv., 16, 81-100 (1944) · Zbl 0060.40008 · doi:10.1007/BF02568567
[22] Imrich, Wilfried, On Whitney’s theorem on the unique embeddability of \(3\)-connected planar graphs. Recent advances in graph theory, Proc. Second Czechoslovak Sympos., Prague, 1974, 303-306. (loose errata) (1975), Academia, Prague · Zbl 0329.05102
[23] KapPD M. Kapovich, A note on properly discontinuous actions, https://www.math.ucdavis.edu\linebreak /\textasciitilde kapovich/EPR/prop-disc.pdf.
[24] KroInf B. Kr\"on, Infinite faces and ends of almost transitive plane graphs, Preprint.
[25] Kuratowski, K., Topology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor, xiv+608 pp. (1968), Academic Press, New York-London; Pa\'{n}stwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw · Zbl 1444.55001
[26] Levinson, Henry; Maskit, Bernard, Special embeddings of Cayley diagrams, J. Combinatorial Theory Ser. B, 18, 12-17 (1975) · Zbl 0278.20034 · doi:10.1093/comjnl/18.3.287
[27] Lyndon, Roger C.; Schupp, Paul E., Combinatorial group theory, Classics in Mathematics, xiv+339 pp. (2001), Springer-Verlag, Berlin · Zbl 0997.20037 · doi:10.1007/978-3-642-61896-3
[28] Marden, A., Geometrically finite Kleinian groups and their deformation spaces. Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975), 259-293 (1977), Academic Press, London
[29] Marden, A., Outer circles, xviii+427 pp. (2007), Cambridge University Press, Cambridge · Zbl 1149.57030 · doi:10.1017/CBO9780511618918
[30] Maschke, H., The representation of finite groups, especially of the rotation groups of the regular bodies of three-and four-dimensional space, by Cayley’s color diagrams, Amer. J. Math., 18, 2, 156-194 (1896) · JFM 27.0105.04 · doi:10.2307/2369680
[31] Maskit, Bernard, On the classification of Kleinian groups. I. Koebe groups, Acta Math., 135, 3-4, 249-270 (1975) · Zbl 0326.30014 · doi:10.1007/BF02392021
[32] Maskit, Bernard, Kleinian groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 287, xiv+326 pp. (1988), Springer-Verlag, Berlin · Zbl 0627.30039
[33] Mazur, Barry, On embeddings of spheres, Bull. Amer. Math. Soc., 65, 59-65 (1959) · Zbl 0086.37004 · doi:10.1090/S0002-9904-1959-10274-3
[34] Mohar, Bojan, Tree amalgamation of graphs and tessellations of the Cantor sphere, J. Combin. Theory Ser. B, 96, 5, 740-753 (2006) · Zbl 1095.05010 · doi:10.1016/j.jctb.2006.02.003
[35] Moise, Edwin E., Geometric topology in dimensions \(2\) and \(3\), Graduate Texts in Mathematics 47, x+262 pp. (1977), Springer-Verlag, New York-Heidelberg · Zbl 0349.57001
[36] Ohshika, Ken’ichi, Discrete groups, Translations of Mathematical Monographs 207, x+193 pp. (2002), American Mathematical Society, Providence, RI · Zbl 1006.20031
[37] RadRiem T. Rad\"o, \"Uber den Begriff der Riemannschen Fl\"ache, Acta Sci.Math. (Szeged), 2 (1925), no.1, 96-114.
[38] Richards, Ian, On the classification of noncompact surfaces, Trans. Amer. Math. Soc., 106, 259-269 (1963) · Zbl 0156.22203 · doi:10.2307/1993768
[39] Richter, R. Bruce; Thomassen, Carsten, 3-connected planar spaces uniquely embed in the sphere, Trans. Amer. Math. Soc., 354, 11, 4585-4595 (2002) · Zbl 1010.57002 · doi:10.1090/S0002-9947-02-03052-0
[40] Scott, Peter, The geometries of \(3\)-manifolds, Bull. London Math. Soc., 15, 5, 401-487 (1983) · Zbl 0561.57001 · doi:10.1112/blms/15.5.401
[41] Series, Caroline, A crash course on Kleinian groups, Rend. Istit. Mat. Univ. Trieste, 37, 1-2, 1-38 (2006) (2005) · Zbl 1127.20033
[42] Thomassen, Carsten, Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface, Trans. Amer. Math. Soc., 323, 2, 605-635 (1991) · Zbl 0722.05031 · doi:10.2307/2001547
[43] Thomassen, Carsten, The Jordan-Sch\"{o}nflies theorem and the classification of surfaces, Amer. Math. Monthly, 99, 2, 116-130 (1992) · Zbl 0773.57001 · doi:10.2307/2324180
[44] Thomassen, Carsten; Vella, Antoine, Graph-like continua, augmenting arcs, and Menger’s theorem, Combinatorica, 28, 5, 595-623 (2008) · Zbl 1175.05045 · doi:10.1007/s00493-008-2342-9
[45] Thurston, William P., Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), 6, 3, 357-381 (1982) · Zbl 0496.57005 · doi:10.1090/S0273-0979-1982-15003-0
[46] Thurston William Thurston, The geometry and topology of three-manifolds, Princeton lecture notes, 1980. · Zbl 0332.57014
[47] Tucker, Thomas W., Finite groups acting on surfaces and the genus of a group, J. Combin. Theory Ser. B, 34, 1, 82-98 (1983) · Zbl 0521.05027 · doi:10.1016/0095-8956(83)90009-6
[48] Whitney, Hassler, Congruent graphs and the connectivity of graphs, Amer. J. Math., 54, 1, 150-168 (1932) · JFM 58.0609.01 · doi:10.2307/2371086
[49] Zieschang, Heiner; Vogt, Elmar; Coldewey, Hans-Dieter, Surfaces and planar discontinuous groups, Lecture Notes in Mathematics 835, x+334 pp. (1980), Springer, Berlin · Zbl 0438.57001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.