×

Delta shock waves as flux-approximation limit of solutions to the modified Chaplygin gas equations. (English) Zbl 1441.76050

Summary: By introducing a triple parameter flux perturbation including pressure in the modified Chaplygin gas equations, we prove that, as the triple parameter flux perturbation vanishes, any two-shock Riemann solution and any two-rarefaction-wave Riemann solution to the perturbed modified Chaplygin gas equations tend to a delta-shock and a vacuum solution to the transport equations, respectively. Then we show that, as a double parameter flux perturbation vanishes, any two-shock Riemann solution under a certain condition to the perturbed modified Chaplygin gas equations tends to a delta shock wave solution to the generalized Chaplygin gas equations. In addition, we also show that, as a single parameter flux perturbation vanishes, any two-shock solution satisfying certain initial data and any parameterized delta shock wave solution to the perturbed generalized Chaplygin gas equations tend to a delta shock wave solution to the generalized Chaplygin gas equations. Finally, we exhibit some representative numerical simulations to confirm the theoretical analysis.

MSC:

76L05 Shock waves and blast waves in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
Full Text: DOI

References:

[1] Benaoum, H.B.: Accelerated universe from modified Chaplygin gas and tachyonic fluid. arXiv:hep-th/0205140
[2] Bento, M. C.; Bertolami, O.; Sen, A. A., Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification, Phys. Rev. D, 66 (2002)
[3] Bouchut, F., On zero pressure gas dynamics, Advances in Kinetic Theory and Computing, 171-190 (1994), River Edge: World Scientific Publishing, River Edge · Zbl 0863.76068
[4] Brenier, Y., Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations, J. Math. Fluid Mech., 7, S326-S331 (2005) · Zbl 1085.35097
[5] Brenier, Y.; Grenier, E., Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35, 2317-2328 (1998) · Zbl 0924.35080
[6] Chaplygin, S., On gas jets, Sci. Mem. Moscow Univ. Math. Phys., 21, 1-121 (1904)
[7] Chen, G.-Q.; Liu, H., Formation of \(\delta \)-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34, 925-938 (2003) · Zbl 1038.35035
[8] Chen, G.-Q.; Liu, H., Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D, 189, 141-165 (2004) · Zbl 1098.76603
[9] Cheng, H.; Yang, H., Delta shock waves as limits of vanishing viscosity for 2-D steady pressureless isentropic flow, Acta Appl. Math., 113, 323-348 (2011) · Zbl 1216.35080
[10] Cheng, H.; Yang, H., Approaching Chaplygin pressure limit of solutions to the Aw-Rascle model, J. Math. Anal. Appl., 416, 839-854 (2014) · Zbl 1310.35164
[11] E, W.; Rykov, Yu. G.; Sinai, Ya. G., Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Commun. Math. Phys., 177, 349-380 (1996) · Zbl 0852.35097
[12] Guo, L.; Sheng, W.; Zhang, T., The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system, Commun. Pure Appl. Anal., 9, 431-458 (2010) · Zbl 1197.35164
[13] Huang, F.; Wang, Z., Well-posedness for pressureless flow, Commun. Math. Phys., 222, 117-146 (2001) · Zbl 0988.35112
[14] Leveque, R., The dynamics of pressureless dust clouds and delta waves, J. Hyperbolic Differ. Equ., 2, 315-327 (2004) · Zbl 1079.76074
[15] Li, J., Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14, 519-523 (2001) · Zbl 0986.76079
[16] Lu, J.; Xu, L.; Li, J.; Chang, B.; Gui, Y.; Liu, H., Constraints on modified Chaplygin gas from recent observations and a comparison of its status with other models, Phys. Lett. B, 662, 87-91 (2008)
[17] Mazzotti, M., Nonclassical composition fronts in nonlinear chromatography: delta-shock, Ind. Eng. Chem. Res., 48, 7733-7752 (2009)
[18] Mazzotti, M.; Tarafder, A.; Cornel, J.; Gritti, F.; Guiochon, G., Experimental evidence of a delta-shock in nonlinear chromatography, J. Chromatogr. A, 1217, 2002-2012 (2010)
[19] Nedeljkov, M., Higher order shadow waves and delta shock blow up in the Chaplygin gas, J. Differ. Equ., 256, 3859-3887 (2014) · Zbl 1288.35350
[20] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463 (1990) · Zbl 0697.65068
[21] Santos, F.; Bedran, M.; Soares, V., On the thermodynamic stability of the modified Chaplygin gas, Phys. Lett. B, 646, 215-221 (2007) · Zbl 1248.83174
[22] Shandarin, S. F.; Zeldovich, Y. B., The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium, Rev. Mod. Phys., 61, 185-220 (1989)
[23] Shen, C., The Riemann problem for the Chaplygin gas equations with a source term, Z. Angew. Math. Mech., 96, 681-695 (2016) · Zbl 1538.35221
[24] Shen, C.; Sun, M., Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model, J. Differ. Equ., 249, 3024-3051 (2010) · Zbl 1211.35193
[25] Sheng, W.; Zhang, T., The Riemann problem for the transport equations in gas dynamics, Mem. Amer. Math. Soc. (1999), Providence: AMS, Providence · Zbl 0913.35082
[26] Sun, M., Singular solutions to the Riemann problem for a macroscopic production model, Z. Angew. Math. Mech., 97, 916-931 (2017) · Zbl 1538.35216
[27] Sun, M., The limits of Riemann solutions to the simplified pressureless Euler system with flux approximation, Math. Methods Appl. Sci., 41, 4528-4548 (2018) · Zbl 1402.35174
[28] Tsien, H. S., Two dimensional subsonoc flow of compressible fluids, J. Aeronaut. Sci., 6, 399-407 (1939) · JFM 65.1496.05
[29] von Karman, T., Compressibility effects in aerodynamics, J. Aeronaut. Sci., 8, 337-365 (1941) · JFM 67.0853.01
[30] Wang, G., The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403, 434-450 (2013) · Zbl 1426.76207
[31] Wang, J.; Yang, H., Vanishing pressure and magnetic field limit of solutions to the nonisentropic magnetogasdynamics, Z. Angew. Math. Mech., 98, 1472-1492 (2018) · Zbl 1538.35222
[32] Yang, H., Riemann problems for a class of coupled hyperbolic systems of conservation laws, J. Differ. Equ., 159, 447-484 (1999) · Zbl 0948.35079
[33] Yang, H.; Cheng, H., Riemann problem for a geometrical optics system, Acta Math. Sin. Engl. Ser., 30, 11, 1846-1860 (2014) · Zbl 1307.35167
[34] Yang, H.; Liu, J., Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation, Sci. China Math., 58, 2329-2346 (2015) · Zbl 1331.35234
[35] Yang, H.; Liu, J., Concentration and cavitation to the Euler equations for nonisentropic fluids by the flux approximation, Nonlinear Anal. TMA, 123-124, 158-177 (2015) · Zbl 1330.76120
[36] Yang, H.; Wang, J., Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas, J. Math. Anal. Appl., 413, 800-820 (2014) · Zbl 1308.76233
[37] Yang, H.; Wang, J., Concentration in vanishing pressure limit of solutions to the modified Chaplygin gas equations, J. Math. Phys., 57 (2016) · Zbl 1355.83039
[38] Yang, H.; Zhang, Y., New developments of delta shock waves and its applications in systems of conservation laws, J. Differ. Equ., 252, 5951-5993 (2012) · Zbl 1248.35127
[39] Yang, H.; Zhang, Y., Delta shock waves with Dirac delta function in both components for systems of conservation laws, J. Differ. Equ., 257, 4369-4402 (2014) · Zbl 1304.35422
[40] Yin, G.; Sheng, W., Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases, J. Math. Anal. Appl., 355, 594-605 (2009) · Zbl 1167.35047
[41] Yin, G.; Sheng, W., Delta wave formation and vacuum state in vanishing pressure limit for system of conservation laws to relativistic fluid dynamics, Z. Angew. Math. Mech., 95, 1, 49-65 (2015) · Zbl 1322.76077
[42] Zhu, Z., Generalized Chaplygin gas as a unified scenario of dark matter/energy: observational constraints, Astron. Astrophys., 423, 421-426 (2004) · Zbl 1069.83516
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.