×

A mixed B-bar formulation derived by a principle of virtual power for energy-momentum time integrations of fiber-reinforced continua. (English) Zbl 1441.74243

Summary: The optimization of finite element discretizations within energy-momentum time integrations of thermodynamical problems leads to further ‘constraints’ on algorithmic modifications compared to static problems, because each modification must not violate discrete balance laws. In order to preserve each discrete balance law while modifying the space approximation, a mixed version of the principle of virtual power is applied. Besides the reduction of volumetric locking in the matrix material and line locking in the fibers of the considered transversely isotropic continuum, a new space approximation additionally prevents spurious shear deformations in bending dominated problems. This approximation is based on independent fields for the deformation gradient and the first Piola-Kirchhoff stress tensor, leading to a new B-bar operator. The local shape functions for the independent deformation gradient are derived by a new criterion from the finite element shape functions. In this way, linear and quadratic hexahedral finite elements are combined with standard and non-standard shape functions of tetrahedral and prismatic elements. In order to evaluate the performance of this new mixed B-bar method with respect to locking as well as thermodynamical behavior, numerical examples with thin-walled, fiber-reinforced structures are considered. The numerical examples also reveal a new aspect of structure preservation, namely, the goal of a spatial mesh density independent structure preservation.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74A15 Thermodynamics in solid mechanics
74P10 Optimization of other properties in solid mechanics

Software:

PARDISO; Gmsh
Full Text: DOI

References:

[1] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
[2] Klinkel, S.; Sansour, C.; Wagner, W., An anisotropic fibre-matrix material model at finite elastic – plastic strains, Comput. Mech., 35, 6, 409-417 (2005) · Zbl 1096.74005
[3] Groß, M.; Dietzsch, J., Variational-based locking-free energy – momentum schemes of higher-order for thermo-viscoelastic fiber-reinforced continua, Comput. Methods Appl. Mech. Engrg., 343, 631-671 (2019) · Zbl 1440.74095
[4] Hughes, T. J.R., The Finite Element Method (2000), Dover: Dover Mineola · Zbl 1191.74002
[5] Simo, J. C.; Armero, F.; Taylor, R. L., Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems, Comput. Methods Appl. Mech. Engrg., 110, 359-386 (1993) · Zbl 0846.73068
[6] Piltner, R.; Taylor, R. L., A systematic construction of b-bar functions for linear and non-linear mixed-enhanced finite elements for plane elasticity problems, Int. J. Numer. Meth. Engng., 44, 5, 615-639 (1999) · Zbl 0947.74067
[7] Armero, F., Assumed strain finite element methods for conserving temporal integrations in non-linear solid dynamics, Int. J. Numer. Meth. Engng., 74, 1795-1847 (2008) · Zbl 1195.74158
[8] Holzapfel, G. A., Nonlinear Solid Mechanics (2000), Wiley: Wiley Chichester · Zbl 0980.74001
[9] Korelc, J.; Solinc, U.; Wriggers, P., An improved eas brick element for finite deformation, Comput. Mech., 46, 641-659 (2010) · Zbl 1358.74059
[10] Bonet, J.; Gil, A.; Ortigosa, R., A computational framework for polyconvex large strain elasticity, Comput. Methods Appl. Mech. Engrg., 283, 1061-1094 (2015) · Zbl 1423.74122
[11] Schröder, J.; Viebahn, N.; Balzani, D.; Wriggers, P., A novel mixed finite element for finite anisotropic elasticity; the SKA-element Simplified Kinematics for Anisotropy, Comput. Methods Appl. Mech. Engrg., 310, 475-494 (2016) · Zbl 1439.74086
[12] Betsch, P.; Janz, A.; Hesch, C., A mixed variational framework for the design of energy – momentum schemes inspired by the structure of polyconvex stored energy functions, Comput. Methods Appl. Mech. Engrg., 335, 660-696 (2018) · Zbl 1440.74065
[13] Charmetant, A.; Orliac, J. G.; Vidal-Sallé, E.; Boisse, P., Hyperelastic model for large deformation analyses of 3d interlock composite preforms, Compos. Sci. Technol., 72, 12, 1352-1360 (2012)
[14] Rudrarajua, S.; Van der Venb, A.; Garikipati, K., Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains, Comput. Methods Appl. Mech. Engrg., 278, 705-728 (2014) · Zbl 1423.74105
[15] Boffi, D.; Brezzi, F.; Fortin, M., Mixed Finite Element Methods and Applications (2013), Springer · Zbl 1277.65092
[16] Oden, J. T.; Carey, G. F., Texas Finite Element Series Volume IV-Mathematical Aspects (1983), Prentice-Hall: Prentice-Hall New Jersey · Zbl 0496.65055
[17] Reese, S., Thermomechanische Modellierung gummiartiger Polymerstrukturen (2001), Habilitationsschrift, F 01/4. Institut für Baumechanik und Numerische Mechanik, Universität Hannover
[18] Groß, M., Higher-order accurate and energy – momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity, (Habilitation thesis. Habilitation thesis, Series of the Chair for Computational Mechanics, Volume 2 (2009), Department of Mechanical Engineering, University of Siegen), 467-3890, urn:nbn:de:hbz
[19] Groß, M.; Dietzsch, J.; Bartelt, M., Variational-based higher-order accurate energy – momentum schemes for thermo-viscoelastic fiber-reinforced continua, Comput. Methods Appl. Mech. Engrg., 336, 353-418 (2018) · Zbl 1440.74103
[20] Wriggers, P., Nichtlineare Finite-Elemente-Methoden (2001), Springer · Zbl 0972.74002
[21] Felippa, C. A., Nonlinear Finite Element Methods (2001), University of Colorado: University of Colorado Boulder, Colorado, USA
[22] Felippa, C. A., A compendium of fem integration formulas for symbolic work, Eng. Comput., 21, 8, 867-890 (2004) · Zbl 1134.74404
[23] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (Interdisciplinary Applied Mathematics)(Volume 7) (1998), Springer · Zbl 0934.74003
[24] Bertrand, F. H.; Gadbois, M. R.; Tanguy, P. A., Tetrahedral elements for fluid flow, Int. J. Numer. Meth. Engng, 33, 1251-1267 (1992) · Zbl 0753.76090
[25] Miehe, C.; Schröder, J., Energy and momentum conserving elastodynamics of a non-linear brick-type mixed finite shell element, Int. J. Numer. Meth. Engng., 50, 8, 1801-1823 (2001) · Zbl 0977.74063
[26] Schenk, O.; Gärtner, K., Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst., 20, 3, 475-487 (2004)
[27] Geuzaine, C.; Remacle, J.-F., Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Engng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[28] Nguyen, Q-T.; Thomas, J-C., Inflation and bending of an orthotropic inflatable beam, Thin-Walled Struct., 88, 129-144 (2015)
[29] Kasper, E. P.; Taylor, R. L., Mixed-enhanced formulation for finite deformation axisymmetric-torsion, Int. J. Numer. Meth. Engng., 60, 1, 341-360 (2004) · Zbl 1060.74629
[30] Noels, L.; Stainier, L.; Ponthot, J-P., Self-adapting time integration management in crash-worthiness and sheet metal forming computations, Int. J. Vehicle Des., 30, 1-2, 67-114 (2002)
[31] Glaser, S.; Armero, F., On the formulation of enhanced strain finite elements in finite deformations, Eng. Comput., 14, 7, 759-791 (1997) · Zbl 1071.74699
[32] Groß, M.; Betsch, P., Galerkin-based energy – momentum consistent time-stepping algorithms for classical nonlinear thermo-dynamics, Math. Comp. Simul., 82, 4, 718-770 (2011) · Zbl 1317.74086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.