×

The topological period-index problem over 8-complexes. I. (English) Zbl 1441.55014

The paper is devoted to studying the Postnikov tower of classification space of compact Lie groups. To each connected CW complex \(X\) one associates a Brauer group \(\mathrm{Br}(X)\) consisting of equivalent classes of Azumaya algebras with respect to the equivalence relation: \(\mathcal A_0 \sim \mathcal A_1\) is and only if there exist some vector bundles \(\mathcal E_0\) and \(\mathcal E_1\) such that \(\mathcal A_0 \otimes \mathrm{End}(\mathcal E_0) \equiv \mathcal A_1 \otimes \mathrm{End}(\mathcal E_1)\). Because of the composition of Bockstein homomorphisms \(H^1(X;PU_r) \to H^2(X;\mathbb S^2 \to H^3(X;\mathbb Z)\) for the exact sequence \(1 \to \mathbb S^1 \to U_r \to PU_r \to 1\) of unitary groups and the homotopy-exact sequence \( 0 \to \mathbb Z \to\mathbb C \overset\exp\longrightarrow \mathbb C^\times \cong \mathbb S^1 \to 1 \), the Brauer group is included in the torsions \(H^3(X;\mathbb Z)_{\mathrm{tor}}\). Following J.-P. Serre, for finite CW complexes \(X\), \(\mathrm{Br}(X) = H^3(X;\mathbb Z)_{\mathrm{tor}}\). The period of any \(\alpha = \langle \mathcal A\rangle \in H^3(X;\mathbb Z)_{\mathrm{tor}}\) is the period \(\mathrm{per}(\alpha)\) of torsion element \(\alpha\), the index \(\mathrm{ind(}\alpha)\) is the greatest common divisor (GCD) of all \(r\) such that \(\mathrm{per}(\alpha) | r\).
The topological period-index conjecture of Antieau-William states that for any \(2d\)-dimensional finite CW complex \(X\), and any class \(\alpha\), \(\mathrm{ind}(\alpha)|\mathrm{per}(\alpha)^{d-1}\). It was shown by the same authors that the conjecture fails for 6-dimensional finite CW complexes by constructing a complex such that \(\mathrm{per}(\alpha) = n\) but \(\mathrm{ind}(\alpha) = \mathrm{GCD}(2,n). n^2\).
The main result of the paper is Theorem 1.7 stating that the topological period-index conjecture fails in dimension 8: \(\mathrm{ind}(\alpha) |\mathrm{GCD}(2,n).\mathrm{GCD}(3,n).n^3\) and if \(X\) is the 8th skeleton of the space \(X=K(\mathbb Z/n,2)\) and \(\alpha\) is the restriction of the fundamental class \(\beta_n\in H^2(K(\mathbb Z/n,2), \mathbb Z)\), then \(\mathrm{ind}(\alpha) = \mathrm{GCD}(3,n).n^3\), if \(n\) is odd and \(\mathrm{ind}(\alpha) =\mathrm{GCD}(3,n).n^2 | \mathrm{ind}(\alpha)\), if \(n\) is even.

MSC:

55S45 Postnikov systems, \(k\)-invariants
55N15 Topological \(K\)-theory
55R20 Spectral sequences and homology of fiber spaces in algebraic topology
14F22 Brauer groups of schemes
55S35 Obstruction theory in algebraic topology

References:

[1] B.Antieau and B.Williams, ‘The topological period‐index conjecture’, unpublished. · Zbl 1510.55012
[2] B.Antieau and B.Williams, ‘The topological period-index problem over \(6\)‐complexes’, J. Topol.7 (2013) 617-640. · Zbl 1299.14018
[3] B.Antieau and B.Williams, ‘The period‐index problem for twisted topological \(K\)‐theory’, Geom. Topol.18 (2014) 1115-1148. · Zbl 1288.19006
[4] B.Antieau and B.Williams, ‘Prime decomposition for the index of a Brauer class’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XVII (2017) 277-285. · Zbl 1391.14036
[5] B.Antieau and B.Williams, ‘The prime divisors of the period and index of a Brauer class’, J. Pure Appl. Algebra219 (2015) 2218-2224. · Zbl 1336.14016
[6] S.Araki, ‘Steenrod reduced powers in the spectral sequences associated with a fibering’, Mem. Fac. Sci. Kyushu Univ. Ser. A Math.11 (1957) 15-64. · Zbl 0094.35604
[7] M.Atiyah, \(K\)‐theory (CRC Press, Boca Raton, FL, 2018).
[8] M.Atiyah and G.Segal, ‘Twisted \(K\)‐theory’, (Ukrainian Mathematical Bulletin) TOM 1 (2004) 287-330. · Zbl 1151.55301
[9] M.Atiyah and G.Segal, ‘Twisted \(K\)‐theory and cohomology’, Inspired by S. S. Chern, Nankai Tracts Math., vol. 11 (World Sci. Publ., Hackensack, NJ, 2006) 5-43, https://doi.org/10.1142/9789812772688_0002. MR 2307274. · Zbl 1138.19003 · doi:10.1142/9789812772688_0002
[10] J.‐L.Colliot‐Thélene, ‘Exposant et indice d’algèbres simples centrales non ramifiées’, Enseign. Math.48 (2002) 127-146. · Zbl 1047.16007
[11] P.Donovan and M.Karoubi, ‘Graded Brauer groups and \(K\)‐theory with local coefficients’, Publications Mathématiques de l’IHÉS38 (1970) 5-25. · Zbl 0207.22003
[12] A.Grothendieck, ‘Le groupe de Brauer. i. algebres dazumaya et interprétations diverses’, Dix exposés sur la cohomologie des schémas3 (1968) 46-66. · Zbl 0193.21503
[13] X.Gu, ‘On the cohomology of the classifying spaces of projective unitary groups’, J. Topol. Anal., https://doi.org/10.1142/S1793525320500211. · Zbl 1477.55016 · doi:10.1142/S1793525320500211
[14] J.McCleary, A user’s guide to spectral sequences, Cambridge Studies in Advanced Mathematics 58 (Cambridge University Press, Cambridge, 2001). · Zbl 0959.55001
[15] R. E.Mosher and M. C.Tangora, Cohomology operations and applications in homotopy theory (Courier Corporation, Chelmsford, MA, 2008).
[16] É.normalesupérieure (France) and H.Cartan, Séminaire Henri Cartan: ann. 7 1954/1955; Algèbres d’Eilenberg‐Maclane et homotopie (Secretariat Mathematique, 1958).
[17] R.Vasquez, ‘Nota sobre los cuadrados de Steenrod en la sucesion espectral de un espacio fibrado’, Bol. Soc. Mat. Mex.2 (1957) 1-8.
[18] C. A.Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38 (Cambridge University Press, Cambridge, 1995). · Zbl 0834.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.