×

Quantitative logarithmic equidistribution of the crucial measures. (English) Zbl 1441.37104

Summary: Let \(K\) be an algebraically closed field of characteristic 0 that is complete with respect to a non-Archimedean absolute value, and let \(\phi \in K(z)\) with \(\deg (\phi )\ge 2\). Recently, Rumely introduced a family of discrete probability measures \(\{\nu _{\phi ^n}\}\) on the Berkovich line \(\mathbf{P }^1_{\text{K}}\) over \(K\) which carry information about the reduction of conjugates of \(\phi \). In a previous article, the author showed that the measures \(\nu _{\phi ^n}\) converge weakly to the canonical measure \(\mu _\phi \). In this article, we extend this result to allow test functions which may have logarithmic singularities at the boundary of \(\mathbf{P }^1_{\text{K}}\). These integrands play a key role in potential theory, and we apply our main results to show the potential functions attached to \(\nu _{\phi ^n}\) converge to the potential function attached to \(\mu _\phi \), as well as an approximation result for the Lyapunov exponent of \(\phi \).

MSC:

37P05 Arithmetic and non-Archimedean dynamical systems involving polynomial and rational maps
11S82 Non-Archimedean dynamical systems

References:

[1] Baker, M., Rumely, R.: Potential theory and dynamics on the Berkovich projective line. AMS, Providence (2010) · Zbl 1196.14002 · doi:10.1090/surv/159
[2] Berkovich, V.G.: Spectral theory and analytic geometry over non-Archimedean fields. AMS, Providence (1990) · Zbl 0715.14013
[3] Chinburg, T., Rumely, R.: The capacity pairing. J. Reine Agnew. Math. 434, 1-44 (1993) · Zbl 0756.14013
[4] Doyle, J.R., Jacobs, K., Rumely, R.: Configuration of the crucial set for a quadratic rational map. Res. Number Theory 2, 1-6 (2016). https://doi.org/10.1007/s40993-016-0041-y · Zbl 1391.37086 · doi:10.1007/s40993-016-0041-y
[5] Faber, X.: Topology and geometry of the Berkovich ramification locus I. Manuscripta Math. 142, 439-474 (2013) · Zbl 1288.14014 · doi:10.1007/s00229-013-0611-4
[6] Faber, X.: Topology and geometry of the Berkovich ramification locus II. Mathematische Annalen 356, 819-844 (2013) · Zbl 1277.14020 · doi:10.1007/s00208-012-0872-3
[7] Favre, C., Jonsson, M.: The valuative tree. Springer, Berlin (2004) · Zbl 1064.14024 · doi:10.1007/b100262
[8] Favre, C., Rivera-Letelier, J.: Théorème d’é’quidistribution de Brolin en dynamique p-adique. C. R. Math. Acad. Sci. Paris 339(4), 271-276 (2004) · Zbl 1052.37039 · doi:10.1016/j.crma.2004.06.023
[9] Favre, C., Rivera-Letelier, J.: Théorie Ergodique des Fractions Rationelles sur un Corps Ultramétrique. Proc. Lond. Math. Soc. 1, 116-154 (2010) · Zbl 1254.37064 · doi:10.1112/plms/pdp022
[10] Jacobs, K.: An equidistribution result for dynamical systems on \[\mathbf{P}_{\text{ K }}^1\] PK1. J. Number Theory 180, 86-138 (2017) · Zbl 1391.37087 · doi:10.1016/j.jnt.2017.02.018
[11] Okuyama, Y.: Repelling periodic points and logarithmic equidistribution in non-archimedean dynamics. Acta Arith. 152(3), 267-277 (2012) · Zbl 1302.37069 · doi:10.4064/aa152-3-3
[12] Okuyama, Y.: Quantitative approximations of the lyapunov exponent of a rational function over valued fields. Mathematische Zeitschrift 280(3), 691-706 (2015) · Zbl 1332.37068 · doi:10.1007/s00209-015-1443-6
[13] Przytycki, F.: Lyapunov characteristic exponents are non-negative. Proc. Am. Math. Soc. 119(1), 309-317 (1993) · Zbl 0787.58037 · doi:10.1090/S0002-9939-1993-1186141-9
[14] Rivera-Letelier, J.: Dynamique des fonctions rationnelles sur les corps locaux. Astérique 287, 147-230 (2003) · Zbl 1140.37336
[15] Rivera-Letelier, J.: Points périodiques des fonctions rationnelles dans l’espace hyperbolique p-adique. Comment. Math. Helv. 80, 593-629 (2005) · Zbl 1140.37337 · doi:10.4171/CMH/27
[16] Rumely, R.: A new equivariant in non-Archimedean dynamics. Algebra Number Theory 11(4), 841-884 (2017) · Zbl 1392.37119 · doi:10.2140/ant.2017.11.841
[17] Rumely, R.: The minimal resultant locus. Acta Arithmetica 169, 251-290 (2015) · Zbl 1379.37148 · doi:10.4064/aa169-3-3
[18] Rumely, R., Winburn, S.: The Lipschitz constant of a non-Archimedean rational function. Preprint available on arXiv:1512.01136
[19] Silverman, J.: The arithmetic of dynamical systems. Springer, Berlin (2007) · Zbl 1130.37001 · doi:10.1007/978-0-387-69904-2
[20] Thuillier, A.: Théorie du potential sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov. Ph.D. thesis, University of Rennes (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.