×

Coexistence of bouncing and classical periodic solutions of generalized Lazer-Solimini equation. (English) Zbl 1441.34052

The paper investigates the generalized Lazer-Solimini periodic equation \[ x'' + g(x) = p(t), \] where \(g\) is a locally Lipschitz continuous function, positive and non-increasing on \((0,+\infty)\), with \(\lim_{x\to0^{+}} g(x)=\infty\) and \(\int_{0}^{1} g(x)\,\mathrm{d}x<+\infty\), \(p\) is a continuous function, \(2\pi\)-periodic on \(\mathbb{R}\), such that \(\int_{0}^{2\pi} p(s)\,\mathrm{d}s / 2\pi > \lim_{x\to+\infty} g(x)\). Exploiting a generalized version of the Poincaré-Birkhoff fixed point theorem, the authors prove the existence of a constant \(K>0\) such that there exist at least two \(2\pi\)-periodic bouncing solutions (reaching the singularity at isolated points) with maximum less than \(K\) and a unique \(2\pi\)-periodic classical solution with minimum greater than \(K\).

MSC:

34C25 Periodic solutions to ordinary differential equations
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
37C60 Nonautonomous smooth dynamical systems
37E40 Dynamical aspects of twist maps
Full Text: DOI

References:

[1] Bonheure, D.; Fabry, C., Periodic motions in impact oscillators with perfectly elastic bounces, Nonlinearity, 15, 1-17 (2002) · Zbl 1019.34044
[2] Brown, M.; Neumann, W. D., Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math., 21-31 (1977) · Zbl 0402.55001
[3] Butler, G. J., The Poincaré-Birkhoff “twist” theorem and periodic solutions of second-order nonlinear differential equations, (Ahmad, S.; Keener, M.; Lazer, A. C., Proceedings of the 8th Fall Conference on Differential Equations. Proceedings of the 8th Fall Conference on Differential Equations, Stillwater, 1979 (1980), Academic Press, Inc.: Academic Press, Inc. New York), 135-147 · Zbl 0588.34032
[4] Campos, J.; Torres, P. J., On the structure of the set of bounded solutions on a periodic Liénard equation, Proc. Amer. Math. Soc., 127, 5, 1453-1462 (1999) · Zbl 0920.34045
[5] Ding, W. Y., A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 88, 341-346 (1983) · Zbl 0522.55005
[6] Ding, T.; Zanolin, F., Subharmonic solutions of second order nonlinear equations: A time-map approach, Nonlinear Anal. Theory Methods Appl., 20, 5, 509-532 (1993) · Zbl 0778.34027
[7] Dold, A., Lectures on Algebraic Topology (1980), Springer-Verlag: Springer-Verlag Berlin · Zbl 0234.55001
[8] Fonda, A.; Sfecci, A., Periodic bouncing solutions for nonlinear impact oscillators, Adv. Nonlinear Stud., 13, 1, 179-189 (2013) · Zbl 1278.34039
[9] Franks, J., Generalizations of the Poincaré-Birkhoff theorem, Ann. Math, 128, 139-151 (1988) · Zbl 0676.58037
[10] Habets, P.; Sanchez, L., Periodic solution of some Liénard equations with singularities, Proc. Amer. Math. Soc., 109, 1035-1044 (1990) · Zbl 0695.34036
[11] Hakl, R.; Torres, P. J., On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differential Equations, 248, 1, 111-126 (2010) · Zbl 1187.34049
[12] Hakl, R.; Torres, P. J.; Zamora, M., Periodic solutions of singular second order differential equations: Upper and lower functions, Nonlinear Anal., 74, 7078-7093 (2011) · Zbl 1232.34068
[13] Hakl, R.; Torres, P. J.; Zamora, M., Periodic solutions to singular second order differential equations: The repulsive case, Topol. Methods Nonlinear Anal., 39, 199-220 (2012) · Zbl 1279.34038
[14] Jacobowitz, H., Periodic solutions of \(x^{\prime \prime} + f ( x , t ) = 0\) via Poincaré-Birkhoff theorem, J. Differential Equations, 20, 37-52 (1976) · Zbl 0285.34028
[15] Lazer, A.; Solimini, S., On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 99, 1, 109-114 (1987) · Zbl 0616.34033
[16] Martínez-Amores, P.; Torres, P. J., Dynamics of a periodic differential equation with a singular nonlinearity of attractive type, J. Math. Anal. Appl., 202, 3, 1027-1039 (1996) · Zbl 0865.34030
[17] Ortega, R., Asymmetric oscillators and twist mappings, J. Lond. Math. Soc., 53, 325-342 (1996) · Zbl 0860.34017
[18] Ortega, R., Dynamics of a forced oscillator having an obstacle, (Benci, V.; Cerami, G.; Degiovanni, M.; Fortunato, D., Variational and Topological Methods in the Study of Nonlinear Phenomena. Variational and Topological Methods in the Study of Nonlinear Phenomena, Progress in Nonnlinear Differential Equations, vol. 49 (2001), Birkhäuser: Birkhäuser Boston, Basel, Berlin), 75-87 · Zbl 1054.34057
[19] Ortega, R., Linear motions in a periodically forced Kepler problem, Port. Math., 68, 2, 149-176 (2011) · Zbl 1235.34136
[20] Qian, D.; Torres, P. J., Bouncing solutions of an equation with attractive singularity, Proc. R. Soc. Edinburgh A, 134, 1, 201-213 (2004) · Zbl 1062.34047
[21] Qian, D.; Torres, P. J., Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36, 6, 1707-1725 (2005) · Zbl 1092.34019
[22] Rachůnková, I.; Staněk, S.; Tvrdý, M., Solvability of nonlinear singular problems for ordinary differential equations, (Contemporary Mathematics and Its Applications, vol. 5 (2008), Hindawi Publishing Corporation: Hindawi Publishing Corporation New York) · Zbl 1228.34003
[23] Rachůnková, I.; Tvrdý, M.; Vrkoč, I., Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems, J. Differential Equations, 176, 445-469 (2001) · Zbl 1004.34008
[24] Rebelo, C., A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal. Theory Methods Appl., 29, 3, 291-311 (1997) · Zbl 0906.34029
[25] Sfecci, A., Periodic impact motions at resonance of a particle bouncing on spheres and cylinders, Adv. Nonlinear Stud., 17, 3, 481-496 (2017) · Zbl 1371.34058
[26] Sun, X.; Qian, D., Periodic bouncing solutions for attractive singular second-order equations, Nonlinear Anal., 71, 4751-4757 (2009) · Zbl 1181.34051
[27] Torres, P. J., (Mathematical Models with Singularities. A Zoo of Singular Creatures. Mathematical Models with Singularities. A Zoo of Singular Creatures, Atlantis Briefs in Differential Equations, vol. 1 (2015), Atlantis Press) · Zbl 1305.00097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.