×

Subdirect sums of Lie algebras. (English) Zbl 1441.17019

Results of G. Baumslag and J. Roseblade on subdirect products of free groups [J. Lond. Math. Soc., II. Ser. 30, 44–52 (1984; Zbl 0559.20018)] have been generalised by M. R. Bridson et al. to subdirect products of limit groups [Geom. Dedicata 92, 95–103 (2002; Zbl 1048.20009); Ann. Math. (2) 170, No. 3, 1447–1467 (2009; Zbl 1196.20047)].
The authors develop a similar theory for Lie algebras. This requires substantial changes in the approach, in particular because the homotopical methods of group theory are not generally available. The paper under review appeals to homological methods to study subdirect sums of Lie algebras of homological type \(F P_{s}\). Among the result one obtains there is a Lie algebra version of results of the above cited papers: Theorem B states that if \(L\) is a Lie algebra of type \(FP_{k}\) which is a subdirect product of the finitely generated Lie algebras \(F_{1}, \dots, F_{k}\), that is, \(L \le F_{1} \oplus \dots \oplus F_{k}\), with all projections of \(L\) on the \(F_{i}\) being surjective, then \(L\) is a direct sum of at most \(k\) free Lie algebras.
The paper also consider fibre sums of Lie algebras, and tackles the Lie algebra analogue of the \(n\)-\((n+1)\)-\((n+2)\) conjecture of B. Kuckuck [Q. J. Math. 65, No. 4, 1293–1318 (2014; Zbl 1353.20037)], which generalises the 1-2-3 Theorem of G. Baumslag et al. [Comment. Math. Helv. 75, No. 3, 457–477 (2000; Zbl 0973.20034)].

MSC:

17B55 Homological methods in Lie (super)algebras
17B05 Structure theory for Lie algebras and superalgebras
17B30 Solvable, nilpotent (super)algebras

References:

[1] [1]Yu. A.BakhturinIdentities in Lie algebras. Nauka (Moscow, 1985). · Zbl 0571.17001
[2] [2]B.BaumslagFree algebras and free groups. J. London math. Soc.(2)4 (1971/72), 523-532. · Zbl 0249.17014
[3] [3]B.BaumslagResidually free group. Proc. London Math. Soc.(3)17 (1967) 402-418.10.1112/plms/s3-17.3.402 · Zbl 0166.01502 · doi:10.1112/plms/s3-17.3.402
[4] [4]G.BaumslagOn generalised free products. Math. Z.78 (1962) 423-438.10.1007/BF01195185 · Zbl 0104.24402 · doi:10.1007/BF01195185
[5] [5]G.Baumslag, M. R.Bridson, C. F.MillerIII and H.ShortFibre Products, non-positive curvature, and decision problems. Comment. Math. Helv.75 (2000), 457-477.10.1007/s000140050136 · Zbl 0973.20034 · doi:10.1007/s000140050136
[6] [6]G.Baumslag and J.RosebladeSubgroups of direct products of free groups. J. London Math. Soc.(2)30 (1984), no. 1, 44-52.10.1112/jlms/s2-30.1.44 · Zbl 0559.20018 · doi:10.1112/jlms/s2-30.1.44
[7] [7]J.Bichon and G.CarnovaleLazy cohomology: an analogue of the Schur multiplier for arbitrary Hopf algebras. J. Pure Appl. Algebra204 (2006), no. 3, 627-665.10.1016/j.jpaa.2005.06.002 · Zbl 1084.16028 · doi:10.1016/j.jpaa.2005.06.002
[8] [8]R.Bieri Homological dimension of discrete groups Queen Mary College Mathematical Notes. (Queen Mary College Department of Pure Mathematics, London, second edition, 1981).
[9] [9]N.BourbakiLie Groups and Lie Algebras, Part 1 (Addison-Wesley, Reading, MA, 1975) Chapters, 1-3. · Zbl 0329.17002
[10] [10]M. R.Bridson, J.Howie, C. F.MillerIII and H.ShortThe subgroups of direct products of surface groups. Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata92 (2002), 95-103.10.1023/A:1019611419598 · Zbl 1048.20009 · doi:10.1023/A:1019611419598
[11] [11]M. R.Bridson, J.Howie, C. F.MillerIII and H.ShortSubgroups of direct products of limit groups. Ann. of Math.(2)170 (2009), no. 3, 1447-1467.10.4007/annals.2009.170.1447 · Zbl 1196.20047 · doi:10.4007/annals.2009.170.1447
[12] [12]M. R.Bridson, J.Howie, C. F.MillerIII and H.ShortOn the finite presentation of subdirect products and the nature of residually free groups. Amer. J. Math.135 (2013), no. 4, 891-933.10.1353/ajm.2013.0036 · Zbl 1290.20024 · doi:10.1353/ajm.2013.0036
[13] [13]K.BrownCohomology of groups (Springer-Verlag1982).10.1007/978-1-4684-9327-6 · doi:10.1007/978-1-4684-9327-6
[14] [14]R. M.Bryant and J. R. J.GrovesFinitely presented Lie algebras. J. of Algebra218 (1999), 1-25.10.1006/jabr.1998.7822 · Zbl 0935.17005 · doi:10.1006/jabr.1998.7822
[15] [15]R. M.Bryant and J. R. J.GrovesFinite presentation of abelian-by-finite-dimensional Lie algebras. J. London Math. Soc.(2)60 (1999), no. 1, 45-57.10.1112/S0024610799007553 · Zbl 0940.17006 · doi:10.1112/S0024610799007553
[16] [16]J. R. J.Groves and D. H.KochloukovaHomological finiteness properties of Lie algebras. J. Algebra279 (2004), no. 2, 840-849.10.1016/j.jalgebra.2004.02.014 · Zbl 1127.17021 · doi:10.1016/j.jalgebra.2004.02.014
[17] [17]N.Jacobson Lie algebras. Interscience Tracts in Pure and Applied Mathematics, No. 10 (Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962). · Zbl 0121.27504
[18] [18]D. H.KochloukovaOn the homological finiteness properties of some modules over metabelian Lie algebras. Israel J. Math.129 (2002), 221-239.10.1007/BF02773165 · Zbl 0998.17021 · doi:10.1007/BF02773165
[19] [19]D. H.KochloukovaOn subdirect products of type FPm of limit groups. J. Group Theory13 (2010), no. 1, 1-19.10.1515/jgt.2009.028 · Zbl 1245.20065 · doi:10.1515/jgt.2009.028
[20] [20]D. H.Kochloukova and F. F.Lima Homological finiteness properties of fibre products, submitted · Zbl 1443.20080
[21] [21]B.KuckuckSubdirect products of groups and the n - (n + 1) - (n + 2) conjecture. Q. J. Math.65 (2014), no. 4, 1293-1318.10.1093/qmath/hau004 · Zbl 1353.20037 · doi:10.1093/qmath/hau004
[22] [22]T. Y.Lam Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189 (Springer-Verlag, New York, 1999). · Zbl 0911.16001
[23] [23]J.RotmanAn Introduction to Homological Algebra (Academic Press, New York-London, 1979). · Zbl 0441.18018
[24] [24]A. I.ŠirsovSubalgebras of free Lie algebras. Math Sb(2), 33 (1953), 441-452. · Zbl 0052.03004
[25] [25]E.WittDie Unterringe der freien Lieschen Ringe. Math. Z.64 (1956), 195-216.10.1007/BF01166568 · Zbl 0070.02903 · doi:10.1007/BF01166568
[26] [26]C. A.WeibelAn Introduction to Homological Algebra (Cambridge University Press, Cambridge, 1994).10.1017/CBO9781139644136 · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.