×

Shifted convolution \(L\)-series values for elliptic curves. (English) Zbl 1441.11170

Summary: Using explicit constructions of the Weierstrass mock modular form and Eisenstein series coefficients, we obtain closed formulas for the generating functions of values of shifted convolution \(L\)-functions associated to certain elliptic curves. These identities provide a surprising relation between weight 2 newforms and shifted convolution \(L\)-values when the underlying elliptic curve has modular degree 1 with conductor \(N\) such that \(\text{genus}(X_0(N))=1\).

MSC:

11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11F37 Forms of half-integer weight; nonholomorphic modular forms

References:

[1] C. Alfes, M. Griffin, K. Ono, and L. Rolen, Weierstrass mock modular forms and elliptic curves, Res. Number Theory 1 (2015), Art. 24, 31 pp. · Zbl 1388.11019
[2] O. Beckwith, Asymptotic bounds for special values of shifted convolution dirichlet series, Proc. Amer. Math. Soc. 145 (2017), 2373-2381. · Zbl 1397.11081 · doi:10.1090/proc/13417
[3] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over \[\mathbb{Q}\] Q: wild \[33\]-adic exercises, J. Amer. Math. Soc. 14 (2001), 843-939. · Zbl 0982.11033 · doi:10.1090/S0894-0347-01-00370-8
[4] K. Bringmann, M. H. Mertens, and K. Ono, \[p\] p-adic properties of modular shifted convolution Dirichlet series, Proc. Amer. Math. Soc. 144 (2016), 1439-1451. · Zbl 1397.11082 · doi:10.1090/proc/12809
[5] K. Bringmannand K. Ono, Coefficients of harmonic Maass forms, In: Partitions, q-Series, and Modular Forms, 23-38, Dev. Math., 23, Springer, New York, 2012. · Zbl 1333.11040
[6] J. H. Bruinierand J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), 45-90. · Zbl 1088.11030 · doi:10.1215/S0012-7094-04-12513-8
[7] J. H. Bruinier, K. Ono, and R. C. Rhoades, Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues, Math. Ann. 342 (2008), 673-693. · Zbl 1246.11098 · doi:10.1007/s00208-008-0252-1
[8] D. Choi, Poincaré series and the divisors of modular forms, Proc. Amer. Math. Soc. 138 (2010), 3393-3403. · Zbl 1211.11051 · doi:10.1090/S0002-9939-2010-10133-8
[9] A. Clemm, Modular forms and Weierstrass mock modular forms, Mathematics 4 (2016), 8 p. · Zbl 1417.11061
[10] F. Diamondand J. Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005. · Zbl 1062.11022
[11] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267-298. · Zbl 0080.06003 · doi:10.1007/BF01258863
[12] B. H. Grossand D. B. Zagier, Heegner points and derivatives of \[L\] L-series, Invent. Math. 84 (1986), 225-320. · Zbl 0608.14019 · doi:10.1007/BF01388809
[13] J. Hoffstein, T. A. Hulse, and A. Reznikov, Multiple Dirichlet series and shifted convolutions, J. Number Theory 161 (2016), 457-533. · Zbl 1404.11060 · doi:10.1016/j.jnt.2015.10.001
[14] P. Guerzhoy, A mixed mock modular solution of the Kaneko-Zagier equation, Ramanujan J. 36 (2015), 149-164. · Zbl 1380.11045 · doi:10.1007/s11139-013-9496-9
[15] M. H. Mertensand K. Ono, Special values of shifted convolution Dirichlet series, Mathematika 62 (2016), 47-66. · Zbl 1397.11083 · doi:10.1112/S0025579315000169
[16] K. Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, In: Current Developments in Mathematics, 2008, 347-454, Int. Press, Somerville, MA, 2009. · Zbl 1229.11074
[17] R.A. Rankin, Contributions to the theory of Ramanujan’s function \[\tau (n)\] τ(n) and similar arithmetical functions, Proc. Cambridge Philos. Soc. 35 (1939), 351-372. · Zbl 0021.39201 · doi:10.1017/S0305004100021095
[18] R. C. Rhoades, Linear relations among Poincaré series via harmonic weak Maaßforms, Ramanujan J. 29 (2012), 311-320. · Zbl 1277.11044 · doi:10.1007/s11139-012-9377-7
[19] B. Schoeneberg, Elliptic Modular Functions: An Introduction, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. · Zbl 1211.11051
[20] A. Selberg, V. Bjerknes, and J. Molland, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47-50. · Zbl 1088.11030
[21] P. G. Shimura, Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan 11 (1959), 291-311. · Zbl 0090.05503 · doi:10.2969/jmsj/01140291
[22] J. Sturm, Projections of \[{\cal{C}}^\infty C\]∞ automorphic forms, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 435-439. · Zbl 0433.10013
[23] E. T. Whittaker, An expression of certain known functions as generalized hypergeometric functions, Bull. Amer. Math. Soc. 10 (1903), 125-134. · JFM 34.0490.03
[24] D. Zagier, Modular parametrizations of elliptic curves, Canad. Math. Bull. 28 (1985), 372-384. · Zbl 0579.14027
[25] S. Zwegers, Mock theta functions, PhD Thesis, Universiteit Utrecht, 2002. · Zbl 1194.11058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.