×

1-\(t\)-motifs. (English) Zbl 1441.11151

Böckle, Gebhard (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. EMS Series of Congress Reports. Zürich: European Mathematical Society (EMS). 417-439 (2020).
Summary: We show that the module of rational points on an abelian \(t\)-module \(E\) is canonically isomorphic with the module \(\text{Ext}^1(M_E, K[t])\) of extensions of the trivial \(t\)-motif \(K[t]\) by the \(t\)-motif \(M_E\) associated with \(E\). This generalizes prior results of G. W. Anderson and D. S. Thakur [Ann. Math. (2) 132, No. 1, 159–191 (1990; Zbl 0713.11082)], M. A. Papanikolas and N. Ramachandran [J. Number Theory 98, No. 2, 407–431 (2003; Zbl 1090.11040)], and S. S. Woo [Bull. Korean Math. Soc. 32, No. 2, 251–257 (1995; Zbl 0838.11042)].
In case \(E\) is uniformizable we show that this extension module is canonically isomorphic with the corresponding extension module of Pink-Hodge structures. This situation is formally very similar to Deligne’s theory of 1-motifs and we have tried to build up the theory in a way that makes this analogy as clear as possible.
For the entire collection see [Zbl 1441.14003].

MSC:

11G09 Drinfel’d modules; higher-dimensional motives, etc.
11-02 Research exposition (monographs, survey articles) pertaining to number theory
14A20 Generalizations (algebraic spaces, stacks)
11J93 Transcendence theory of Drinfel’d and \(t\)-modules
11M38 Zeta and \(L\)-functions in characteristic \(p\)

References:

[1] Greg W. Anderson,t-motives. Duke Math. J. 53(2) (1986), 457-502.MR850546. · Zbl 0679.14001
[2] Greg W. Anderson, W. Dale Brownawell, and Matthew A. Papanikolas, Determination of the algebraic relations among special-values in positive characteristic. Ann. Math. (2), 160(1) (2004), 237-313.MR2119721. · Zbl 1064.11055
[3] Greg W. Anderson and Dinesh S. Thakur, Tensor powers of the Carlitz module and zeta values. Ann. Math. (2) 132(1) (1990), 159-191MR1059938. · Zbl 0713.11082
[4] Pierre Deligne, Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5-77. MR0498552. · Zbl 0237.14003
[5] Jean Dieudonné, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique p > 0. VII. Math. Ann. 134 (1957), 114-133.MR0098146. · Zbl 0086.02605
[6] V. G. Drinfeld, Elliptic modules. Mat. Sb. (N.S.) 94(136) (1974), 594-627, 656.MR0384707.
[7] Francis Gardeyn,t-Motives and Galois Representations. PhD thesis, Universiteit Gent, 2001. · Zbl 1108.11046
[8] Gérard Laumon, Cohomology of Drinfeld modular varieties. Part I, volume 41 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1996. MR1381898. · Zbl 0837.14018
[9] Matthew A. Papanikolas and Niranjan Ramachandran, A Weil-Barsotti formula for Drinfeld modules. J. Number Theory 98(2) (2003), 407-431.MR1955425. · Zbl 1090.11040
[10] Richard Pink, Hodge structures over function fields. pre-print, 1997.
[11] Jean-Pierre Serre, Abelianl-adic representations and elliptic curves. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A. Benjamin, New York, Amsterdam, 1968.MR0263823. · Zbl 0186.25701
[12] N. R. Stalder, Algebraic Monodromy Groups ofA-Motives. PhD thesis, ETH Zürich, 2007.
[13] L. Taelman, Artint-Motifs. J. Number Theory 129 (2009), 142-157.MR2468475. · Zbl 1254.11059
[14] L. Taelman, SpecialL-values oft-motives: a conjecture. Int. Math. Res. Not. IMRN (16) (2009), 2957-2977.MR2533793. · Zbl 1236.11082
[15] Sung Sik Woo, Extensions of Drinfeld modules of rank 2 by the Carlitz module. · Zbl 0838.11042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.